IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i23p16213-d1285684.html
   My bibliography  Save this article

Irrigation Technology Interventions as Potential Options to Improve Water Security in India and Africa: A Comparative Review

Author

Listed:
  • Juliet Angom

    (Amrita School for Sustainable Futures, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P O, Kollam 690525, Kerala, India)

  • P. K. Viswanathan

    (Amrita School of Business, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P O, Kollam 690525, Kerala, India)

Abstract

Water is an essential resource for the realization of the United Nations’ 2030 Sustainable Development Goals. The increasing global food insecurity, hunger, human population, and uneconomical extraction and use of non-renewable resources require, among other things, a substantial intensification of agricultural production. In this context, there has been a need to adopt irrigation technologies, especially in developing countries where agriculture and its allied sectors employ more than 50% of the total population but account for up to 90% of the total freshwater consumptive use. India and Africa are at the crux of this conundrum, where there is an urgent need to build resilience with the already excessively allotted water resources. Innovative and water-efficient irrigation technologies could be one of the windows of opportunity to overcome water scarcity and enhance food security in these regions. This review sought to comparatively explore how irrigation technological interventions could help overcome water security challenges in India and Africa. Literature retrieved from multidisciplinary electronic databases indicated that, as part of the global south, both India and Africa have untapped irrigation potential due to the adoption of individual-centric irrigation. The irrigation approaches that possess the capacity to increase water and food security as well as reduce poverty levels in India and Africa are broadly grouped into micro-irrigation technologies, renewable energy-powered irrigation technologies, flood recession agriculture, and underground transfer of surface flood water for irrigation. Unlike in India, where overexploitation or extraction is the primary driver of water scarcity (physical scarcity), water insecurity in Africa results from poor management (economic scarcity). The adoption of the foregoing interventions is challenged by existing cultural and land tenure issues, limited access to efficient irrigation technologies and credit services, as well as an overreliance on national governments for support. Despite these challenges, opportunities exist for smallholder irrigation expansion. This study indicates that both Indian and African governments ought to offer stimulus packages that encourage holistic farmer-centric irrigation technologies to improve food and water security.

Suggested Citation

  • Juliet Angom & P. K. Viswanathan, 2023. "Irrigation Technology Interventions as Potential Options to Improve Water Security in India and Africa: A Comparative Review," Sustainability, MDPI, vol. 15(23), pages 1-17, November.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:23:p:16213-:d:1285684
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/23/16213/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/23/16213/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Miriam Otoo & Nicole Lefore & Petra Schmitter & Jennie Barron & Gebrehaweria Gebregziabher, 2018. "Business model scenarios and suitability: smallholder solar pump-based irrigation in Ethiopia. Agricultural Water Management – Making a Business Case for Smallholders (IWMI Research Report 172)," IWMI Research Reports H048583, International Water Management Institute.
    2. Berhe, Gebremeskel Teklay & Baartman, Jantiene E.M. & Veldwisch, Gert Jan & Grum, Berhane & Ritsema, Coen J., 2022. "Irrigation development and management practices in Ethiopia: A systematic review on existing problems, sustainability issues and future directions," Agricultural Water Management, Elsevier, vol. 274(C).
    3. Nelson Mango & Clifton Makate & Lulseged Tamene & Powell Mponela & Gift Ndengu, 2018. "Adoption of Small-Scale Irrigation Farming as a Climate-Smart Agriculture Practice and Its Influence on Household Income in the Chinyanja Triangle, Southern Africa," Land, MDPI, vol. 7(2), pages 1-19, April.
    4. Barghouti,S. & Le Moigne, G., 1990. "Irrigation In Sub-Saharan Africa; The Development Of Public And Private Systems," Papers 123, World Bank - Technical Papers.
    5. Namara, Regassa E. & Upadhyay, Bhawana & Nagar, Rashmi K., 2005. "Adoption and impacts of microirrigation technologies: Empirical results from selected localities of Maharashtra and Gujarat states of India," IWMI Research Reports 44543, International Water Management Institute.
    6. Kinaga, J., 2006. "The adoption of micro irrigation technologies (private sector participation in irrigation development) : The KickStart experience," Conference Papers h039821, International Water Management Institute.
    7. Alam, Mohammad Faiz & Pavelic, Paul, 2020. "Underground Transfer of Floods for Irrigation (UTFI): exploring potential at the global scale," IWMI Research Reports H050008, International Water Management Institute.
    8. Namara, Regassa & Upadhyay, Bhawana & Nagar, R. K., 2005. "Adoption and impacts of microirrigation technologies: empirical results from selected localities of Maharashtra and Gujarat states of India," IWMI Research Reports H037307, International Water Management Institute.
    9. Mamudu Abunga Akudugu & Katherine Kaunza-Nu-Dem Millar & Margaret Atosina Akuriba, 2021. "The Livelihoods Impacts of Irrigation in Western Africa: The Ghana Experience," Sustainability, MDPI, vol. 13(10), pages 1-13, May.
    10. Simone Passarelli & Dawit Mekonnen & Elizabeth Bryan & Claudia Ringler, 2018. "Evaluating the pathways from small-scale irrigation to dietary diversity: evidence from Ethiopia and Tanzania," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 10(4), pages 981-997, August.
    11. Otoo, Miriam & Lefore, Nicole & Schmitter, Petra & Barron, Jennie & Gebregziabher, Gebrehaweria, 2018. "Business model scenarios and suitability: smallholder solar pump-based irrigation in Ethiopia. Agricultural Water Management – Making a Business Case for Smallholders," IWMI Reports 273354, International Water Management Institute.
    12. Hamidat, A & Benyoucef, B & Hartani, T, 2003. "Small-scale irrigation with photovoltaic water pumping system in Sahara regions," Renewable Energy, Elsevier, vol. 28(7), pages 1081-1096.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lefore, N. & Giordano, Meredith & Ringler, C. & Barron, J., "undated". "Sustainable and equitable growth in farmer-led irrigation in Sub-Saharan Africa: what will it take?," Papers published in Journals (Open Access) H049101, International Water Management Institute.
    2. Nelson Mango & Clifton Makate & Lulseged Tamene & Powell Mponela & Gift Ndengu, 2018. "Adoption of Small-Scale Irrigation Farming as a Climate-Smart Agriculture Practice and Its Influence on Household Income in the Chinyanja Triangle, Southern Africa," Land, MDPI, vol. 7(2), pages 1-19, April.
    3. Charmaine Samala Guno & Casper Boongaling Agaton, 2022. "Socio-Economic and Environmental Analyses of Solar Irrigation Systems for Sustainable Agricultural Production," Sustainability, MDPI, vol. 14(11), pages 1-15, June.
    4. Kexiao Xie & Yuerui Zhu & Yongqiang Ma & Youcheng Chen & Shuiji Chen & Zhidan Chen, 2022. "Willingness of Tea Farmers to Adopt Ecological Agriculture Techniques Based on the UTAUT Extended Model," IJERPH, MDPI, vol. 19(22), pages 1-14, November.
    5. Maria Sabbagh & Luciano Gutierrez, 2022. "Micro-Irrigation Technology Adoption in the Bekaa Valley of Lebanon: A Behavioural Model," Sustainability, MDPI, vol. 14(13), pages 1-19, June.
    6. Alessandra Santini & Antonella Di Fonzo & Elisa Giampietri & Andrea Martelli & Orlando Cimino & Anna Dalla Marta & Maria Carmela Annosi & Francisco José Blanco-Velázquez & Teresa Del Giudice & Filiber, 2023. "A Step toward Water Use Sustainability: Implementing a Business Model Canvas for Irrigation Advisory Services," Agriculture, MDPI, vol. 13(5), pages 1-13, May.
    7. Birthal, Pratap S., 2013. "Application of Frontier Technologies for Agricultural Development," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 68(1), pages 1-19.
    8. Magalhaes, M. & Ringler, C. & Verma, Shilp & Schmitter, Petra, 2022. "Accelerating rural energy access for agricultural transformation: contribution of the CGIAR Research Program on Water, Land and Ecosystems to transforming food, land and water systems in a climate cri," IWMI Reports 329154, International Water Management Institute.
    9. Kumar, D. Suresh, 2012. "Adoption of Drip Irrigation System in India: Some Experience and Evidence," Bangladesh Development Studies, Bangladesh Institute of Development Studies (BIDS), vol. 35(1), pages 61-78, March.
    10. Burney, Jennifer A. & Naylor, Rosamond L., 2012. "Smallholder Irrigation as a Poverty Alleviation Tool in Sub-Saharan Africa," World Development, Elsevier, vol. 40(1), pages 110-123.
    11. Kumar, D. Suresh & Palanisami, Kuppannan, 2010. "Impact of Drip Irrigation on Farming System: Evidence from Southern India," Agricultural Economics Research Review, Agricultural Economics Research Association (India), vol. 23(2), July.
    12. Richard Ackermann, 2012. "New Directions for Water Management in Indian Agriculture," Global Journal of Emerging Market Economies, Emerging Markets Forum, vol. 4(2), pages 227-288, May.
    13. Magalhaes, M. & Ringler, C. & Verma, Shilp & Schmitter, Petra, 2021. "Accelerating rural energy access for agricultural transformation: contribution of the CGIAR Research Program on Water, Land and Ecosystems to transforming food, land and water systems in a climate cri," IWMI Books, Reports H050910, International Water Management Institute.
    14. Giordano, Meredith & Turral, H. & Scheierling, S. M. & Treguer, D. O. & McCornick, Peter G, 2017. "Beyond “More Crop per Drop”: evolving thinking on agricultural water productivity," IWMI Research Reports 257962, International Water Management Institute.
    15. Nassima Amiri & Rachid Lahlali & Said Amiri & Moussa EL Jarroudi & Mohammed Yacoubi Khebiza & Mohammed Messouli, 2021. "Development of an Integrated Model to Assess the Impact of Agricultural Practices and Land Use on Agricultural Production in Morocco under Climate Stress over the Next Twenty Years," Sustainability, MDPI, vol. 13(21), pages 1-23, October.
    16. Castillo, G. E. & Namara, Regassa & Ravnborg, H. M. & Hanjra, M. A. & Smith, L. & Hussein, M. H. & Bene, Christopher & Cook, S. & Hirsch, D. & Polak, P. & Valee, Domitille & van Koppen, Barbara, 2007. "Reversing the flow: agricultural water management pathways for poverty reduction," Book Chapters,, International Water Management Institute.
    17. Fitsum Assefa Adela & Joachim Aurbacher & Gumataw Kifle Abebe, 2019. "Small-scale irrigation scheme governance - poverty nexus: evidence from Ethiopia," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 11(4), pages 897-913, August.
    18. A. Narayanamoorthy & N. Devika & M. Bhattarai, 2016. "More Crop and Profit per Drop of Water: Drip Irrigation for Empowering Distressed Small Farmers," IIM Kozhikode Society & Management Review, , vol. 5(1), pages 83-90, January.
    19. Domènech, Laia, 2015. "Is reliable water access the solution to undernutrition? A review of the potential of irrigation to solve nutrition and gender gaps in Africa South of the Sahara:," IFPRI discussion papers 1428, International Food Policy Research Institute (IFPRI).
    20. Narayanamoorthy, A & Bhattarai, M & Jothi, P, 2018. "An assessment of the economic impact of drip irrigation in vegetable production in India," Agricultural Economics Research Review, Agricultural Economics Research Association (India), vol. 31(1).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:23:p:16213-:d:1285684. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.