IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i15p11784-d1207282.html
   My bibliography  Save this article

Research on an Investment Decision Model of Waste Incineration Power under Demand Guarantee Policies

Author

Listed:
  • Yuqun Dong

    (School of Economics and Management, Southeast University, Nanjing 211189, China)

  • Yaming Zhuang

    (School of Economics and Management, Southeast University, Nanjing 211189, China)

Abstract

In order to encourage social capital to sustainably enter waste incineration power generation projects, policy-makers propose demand guarantee policies to ensure the fundamental interests of social capital. Nowadays, demand guarantee policies in China are artificially set based on industry experience and similar biomass power generation projects but lack theoretical support, thus bringing pitfalls to sustainable development. To address this issue, this paper constructs a decision model under the Real Option Approach to obtain investment triggers and guarantee level. Under lower, upper and bidirectional demand guarantee policies, this paper compares three Real Option models considering uncertain factors. The results show that demand guarantee policies usually have an excess guarantee phenomenon that affects long-term interests, and the lower demand guarantee policy can most effectively promote social capital to invest. Policy-makers can choose appropriate policies based on their demands or adjust existing guarantee policies to avoid the excessive guarantees phenomenon and attract social capital to invest in waste incineration.

Suggested Citation

  • Yuqun Dong & Yaming Zhuang, 2023. "Research on an Investment Decision Model of Waste Incineration Power under Demand Guarantee Policies," Sustainability, MDPI, vol. 15(15), pages 1-19, July.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:15:p:11784-:d:1207282
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/15/11784/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/15/11784/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Song, Jinbo & Zhao, Yunpeng & Jin, Lulu & Sun, Yan, 2018. "Pareto optimization of public-private partnership toll road contracts with government guarantees," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 158-175.
    2. Agaton, Casper Boongaling & Guno, Charmaine Samala & Villanueva, Resy Ordona & Villanueva, Riza Ordona, 2020. "Economic analysis of waste-to-energy investment in the Philippines: A real options approach," Applied Energy, Elsevier, vol. 275(C).
    3. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    4. Shi, Shasha & An, Qingxian & Chen, Ke, 2020. "Optimal choice of capacity, toll, and subsidy for build-operate-transfer roads with a paid minimum traffic guarantee," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 228-254.
    5. Wang, Xingwei & Cai, Yanpeng & Dai, Chao, 2014. "Evaluating China's biomass power production investment based on a policy benefit real options model," Energy, Elsevier, vol. 73(C), pages 751-761.
    6. Marzouk, Mohamed & Ali, Mohamed, 2018. "Mitigating risks in wastewater treatment plant PPPs using minimum revenue guarantee and real options," Utilities Policy, Elsevier, vol. 53(C), pages 121-133.
    7. Hu, Junfei & Chen, Huanyue & Zhou, Peng & Guo, Peng, 2022. "Optimal subsidy level for waste-to-energy investment considering flexibility and uncertainty," Energy Economics, Elsevier, vol. 108(C).
    8. Yuri Levin & Jeff McGill & Mikhail Nediak, 2007. "Price Guarantees in Dynamic Pricing and Revenue Management," Operations Research, INFORMS, vol. 55(1), pages 75-97, February.
    9. Barbosa, Luciana & Rodrigues, Artur & Sardinha, Alberto, 2022. "Optimal price subsidies under uncertainty," European Journal of Operational Research, Elsevier, vol. 303(1), pages 471-479.
    10. Boomsma, Trine Krogh & Meade, Nigel & Fleten, Stein-Erik, 2012. "Renewable energy investments under different support schemes: A real options approach," European Journal of Operational Research, Elsevier, vol. 220(1), pages 225-237.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barbosa, Luciana & Rodrigues, Artur & Sardinha, Alberto, 2022. "Optimal price subsidies under uncertainty," European Journal of Operational Research, Elsevier, vol. 303(1), pages 471-479.
    2. Linnerud, Kristin & Andersson, Ane Marte & Fleten, Stein-Erik, 2014. "Investment timing under uncertain renewable energy policy: An empirical study of small hydropower projects," Energy, Elsevier, vol. 78(C), pages 154-164.
    3. Boomsma, Trine Krogh & Linnerud, Kristin, 2015. "Market and policy risk under different renewable electricity support schemes," Energy, Elsevier, vol. 89(C), pages 435-448.
    4. Romano, Teresa & Fumagalli, Elena, 2018. "Greening the power generation sector: Understanding the role of uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 272-286.
    5. Martín-Barrera, Gonzalo & Zamora-Ramírez, Constancio & González-González, José M., 2016. "Application of real options valuation for analysing the impact of public R&D financing on renewable energy projects: A company′s perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 292-301.
    6. Nagy, Roel L.G. & Fleten, Stein-Erik & Sendstad, Lars H., 2023. "Don’t stop me now: Incremental capacity growth under subsidy termination risk," Energy Policy, Elsevier, vol. 172(C).
    7. Raisa Pérez-Vas & Félix Puime Guillén & Joaquín Enríquez-Díaz, 2021. "Valuation of a Company Producing and Trading Seaweed for Human Consumption: Classical Methods vs. Real Options," IJERPH, MDPI, vol. 18(10), pages 1-13, May.
    8. de Bragança, Gabriel Godofredo Fiuza & Daglish, Toby, 2017. "Investing in vertical integration: electricity retail market participation," Energy Economics, Elsevier, vol. 67(C), pages 355-365.
    9. Alain Bensoussan & Benoit Chevalier-Roignant & Alejandro Rivera, 2022. "A model for wind farm management with option interactions," Post-Print hal-04325553, HAL.
    10. Sun, Bo & Fan, Boyang & Zhang, Yifan & Xie, Jingdong, 2023. "Investment decisions and strategies of China's energy storage technology under policy uncertainty: A real options approach," Energy, Elsevier, vol. 278(PA).
    11. Kroniger, Daniel & Madlener, Reinhard, 2014. "Hydrogen storage for wind parks: A real options evaluation for an optimal investment in more flexibility," Applied Energy, Elsevier, vol. 136(C), pages 931-946.
    12. Mo, Jian-Lei & Agnolucci, Paolo & Jiang, Mao-Rong & Fan, Ying, 2016. "The impact of Chinese carbon emission trading scheme (ETS) on low carbon energy (LCE) investment," Energy Policy, Elsevier, vol. 89(C), pages 271-283.
    13. Haehl, Christian & Spinler, Stefan, 2018. "Capacity expansion under regulatory uncertainty:A real options-based study in international container shipping," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 113(C), pages 75-93.
    14. Zhang, M.M. & Wang, Qunwei & Zhou, Dequn & Ding, H., 2019. "Evaluating uncertain investment decisions in low-carbon transition toward renewable energy," Applied Energy, Elsevier, vol. 240(C), pages 1049-1060.
    15. Andreas Welling, 2017. "Green Finance: Recent developments, characteristics and important actors," FEMM Working Papers 170002, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    16. Michail Chronopoulos & Verena Hagspiel & Stein-Erik Fleten, 2017. "Stepwise investment and capacity sizing under uncertainty," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(2), pages 447-472, March.
    17. Qiang Li & Junwei Wang & Jian Ni & Lap Keung Chu & Congdong Li, 2019. "The optimal time to make a risky investment under a permanent exit option," Journal of Intelligent Manufacturing, Springer, vol. 30(7), pages 2669-2680, October.
    18. Carmen Schiel & Simon Glöser-Chahoud & Frank Schultmann, 2019. "A real option application for emission control measures," Journal of Business Economics, Springer, vol. 89(3), pages 291-325, April.
    19. Zhang, M.M. & Zhou, D.Q. & Zhou, P. & Chen, H.T., 2017. "Optimal design of subsidy to stimulate renewable energy investments: The case of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 873-883.
    20. Liu, Shen & Colson, Gregory & Wetzstein, Michael, 2018. "Biodiesel investment in a disruptive tax-credit policy environment," Energy Policy, Elsevier, vol. 123(C), pages 19-30.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:15:p:11784-:d:1207282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.