IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i14p11129-d1195892.html
   My bibliography  Save this article

Sustainable Strategies for the Indian Coal Sector: An Econometric Analysis Approach

Author

Listed:
  • Animesh Mishra

    (Department of Management Studies & Industrial Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India)

  • Niladri Das

    (Department of Management Studies & Industrial Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India)

  • Prem Chhetri

    (College of Business and Law, School of Accounting, Information Systems and Supply Chain, RMIT University, Melbourne 3001, Australia)

Abstract

Thermal power generation based on coal has been identified as the second largest polluting industry due to the greenhouse gas emissions caused by coal combustion. The pollution caused by this industry is not limited to power generation, but it also manifests itself throughout the use of products. Although a huge emphasis has been placed on replacing coal-based power generation with renewable resources, we showed that Indian power generation will depend on coal for more than fifty percent of its demand in the near future. In our study, we utilized a combination of linear cointegration, non-linear cointegration, ARIMA, and the VECM to forecast the use of coal based on the Indian industrial index and the amount of electricity generated through coal combustion required to meet the demand. Given that pollution and carbon emissions are inherent in the coal usage cycle, we drafted policy implications and recommendations to mitigate the consequences, green the coal usage cycle, and improve the coal supply chain.

Suggested Citation

  • Animesh Mishra & Niladri Das & Prem Chhetri, 2023. "Sustainable Strategies for the Indian Coal Sector: An Econometric Analysis Approach," Sustainability, MDPI, vol. 15(14), pages 1-21, July.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:11129-:d:1195892
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/14/11129/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/14/11129/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. YoungSeok Hwang & Jung-Sup Um & JunHwa Hwang & Stephan Schlüter, 2020. "Evaluating the Causal Relations between the Kaya Identity Index and ODIAC-Based Fossil Fuel CO 2 Flux," Energies, MDPI, vol. 13(22), pages 1-20, November.
    2. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    3. Holtz-Eakin, Douglas & Selden, Thomas M., 1995. "Stoking the fires? CO2 emissions and economic growth," Journal of Public Economics, Elsevier, vol. 57(1), pages 85-101, May.
    4. Xepapadeas, Anastasios, 1997. "Economic development and environmental pollution: traps and growth," Structural Change and Economic Dynamics, Elsevier, vol. 8(3), pages 327-350, August.
    5. Azomahou, Theophile & Laisney, Francois & Nguyen Van, Phu, 2006. "Economic development and CO2 emissions: A nonparametric panel approach," Journal of Public Economics, Elsevier, vol. 90(6-7), pages 1347-1363, August.
    6. Tishler, Asher, 1993. "Optimal production with uncertain interruptions in the supply of electricity : Estimation of electricity outage costs," European Economic Review, Elsevier, vol. 37(6), pages 1259-1274, August.
    7. Onafowora, Olugbenga A. & Owoye, Oluwole, 2014. "Bounds testing approach to analysis of the environment Kuznets curve hypothesis," Energy Economics, Elsevier, vol. 44(C), pages 47-62.
    8. Jahangir Alam, Mohammad & Ara Begum, Ismat & Buysse, Jeroen & Van Huylenbroeck, Guido, 2012. "Energy consumption, carbon emissions and economic growth nexus in Bangladesh: Cointegration and dynamic causality analysis," Energy Policy, Elsevier, vol. 45(C), pages 217-225.
    9. Rud, Juan Pablo, 2012. "Electricity provision and industrial development: Evidence from India," Journal of Development Economics, Elsevier, vol. 97(2), pages 352-367.
    10. Jha, Girish Kumar & Pal, Suresh & Singh, Alka, 2012. "Changing Energy-use Pattern and the Demand Projection for Indian Agriculture," Agricultural Economics Research Review, Agricultural Economics Research Association (India), vol. 25(1), June.
    11. Hunt Allcott & Allan Collard-Wexler & Stephen D. O'Connell, 2016. "How Do Electricity Shortages Affect Industry? Evidence from India," American Economic Review, American Economic Association, vol. 106(3), pages 587-624, March.
    12. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 353-377.
    13. Narayan, Paresh Kumar & Narayan, Seema, 2010. "Carbon dioxide emissions and economic growth: Panel data evidence from developing countries," Energy Policy, Elsevier, vol. 38(1), pages 661-666, January.
    14. Rallapalli, Srinivasa Rao & Ghosh, Sajal, 2012. "Forecasting monthly peak demand of electricity in India—A critique," Energy Policy, Elsevier, vol. 45(C), pages 516-520.
    15. M. Hashem Pesaran & Yongcheol Shin & Richard J. Smith, 2001. "Bounds testing approaches to the analysis of level relationships," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(3), pages 289-326.
    16. Shahbaz, Muhammad & Balsalobre-Lorente, Daniel & Sinha, Avik, 2019. "Foreign Direct Investment–CO2 Emissions Nexus in Middle East and North African countries: Importance of Biomass Energy Consumption," MPRA Paper 91729, University Library of Munich, Germany, revised 19 Jan 2019.
    17. Bondia, Ripsy & Ghosh, Sajal & Kanjilal, Kakali, 2016. "International crude oil prices and the stock prices of clean energy and technology companies: Evidence from non-linear cointegration tests with unknown structural breaks," Energy, Elsevier, vol. 101(C), pages 558-565.
    18. Michael Beenstock & Ephraim Goldin & Yoel Haitovsky, 1997. "The Cost of Power Outages in the Business and Public Sectors in Israel: Revealed Preference vs. Subjective Valuation," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 39-61.
    19. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    20. Cole, Matthew A. & Elliott, Robert J.R. & Occhiali, Giovanni & Strobl, Eric, 2018. "Power outages and firm performance in Sub-Saharan Africa," Journal of Development Economics, Elsevier, vol. 134(C), pages 150-159.
    21. Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
    22. Abdulnasser Hatemi-J, 2008. "Tests for cointegration with two unknown regime shifts with an application to financial market integration," Empirical Economics, Springer, vol. 35(3), pages 497-505, November.
    23. Dogan, Eyup & Sebri, Maamar & Turkekul, Berna, 2016. "Exploring the relationship between agricultural electricity consumption and output: New evidence from Turkish regional data," Energy Policy, Elsevier, vol. 95(C), pages 370-377.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Congxiao Chen & Wenya Chen & Li Shang & Haiqiao Wang & Decai Tang & David D. Lansana, 2024. "Price discovery and volatility spillovers in the interest rate derivatives market," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tiwari, Aviral Kumar & Eapen, Leena Mary & Nair, Sthanu R, 2021. "Electricity consumption and economic growth at the state and sectoral level in India: Evidence using heterogeneous panel data methods," Energy Economics, Elsevier, vol. 94(C).
    2. Bastola, Umesh & Sapkota, Pratikshya, 2015. "Relationships among energy consumption, pollution emission, and economic growth in Nepal," Energy, Elsevier, vol. 80(C), pages 254-262.
    3. Bakry, Walid & Mallik, Girijasankar & Nghiem, Xuan-Hoa & Sinha, Avik & Vo, Xuan Vinh, 2023. "Is green finance really “green”? Examining the long-run relationship between green finance, renewable energy and environmental performance in developing countries," Renewable Energy, Elsevier, vol. 208(C), pages 341-355.
    4. Mrabet, Zouhair & Alsamara, Mouyad, 2017. "Testing the Kuznets Curve hypothesis for Qatar: A comparison between carbon dioxide and ecological footprint," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1366-1375.
    5. Seref Bozoklu & A. Oguz Demir & Sinan Ataer, 2020. "Reassessing the environmental Kuznets curve: a summability approach for emerging market economies," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 10(3), pages 513-531, September.
    6. Hossain, Md. Emran & Islam, Md. Sayemul & Bandyopadhyay, Arunava & Awan, Ashar & Hossain, Mohammad Razib & Rej, Soumen, 2022. "Mexico at the crossroads of natural resource dependence and COP26 pledge: Does technological innovation help?," Resources Policy, Elsevier, vol. 77(C).
    7. Rawshan Ara Begum & Asif Raihan & Mohd Nizam Mohd Said, 2020. "Dynamic Impacts of Economic Growth and Forested Area on Carbon Dioxide Emissions in Malaysia," Sustainability, MDPI, vol. 12(22), pages 1-15, November.
    8. Alexander Bass & Dmitry Burakov & Max Freidin, 2019. "Does Financial Development Matter for Environmental Kuznets Curve in Russia? Evidence from the Autoregressive Distributed Lag Bounds Test Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 9(4), pages 334-341.
    9. Zhihui Lv & Amanda M. Y. Chu & Michael McAleer & Wing-Keung Wong, 2019. "Modelling Economic Growth, Carbon Emissions, and Fossil Fuel Consumption in China: Cointegration and Multivariate Causality," IJERPH, MDPI, vol. 16(21), pages 1-35, October.
    10. Quan-Hoang Vuong & Manh-Tung Ho & Hong-Kong To Nguyen & Minh-Hoang Nguyen, 2019. "The trilemma of sustainable industrial growth: evidence from a piloting OECD’s Green city," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-14, December.
    11. Jaruwan Chontanawat, 2020. "Dynamic Modelling of Causal Relationship between Energy Consumption, CO 2 Emission, and Economic Growth in SE Asian Countries," Energies, MDPI, vol. 13(24), pages 1-27, December.
    12. Ang, James B., 2007. "CO2 emissions, energy consumption, and output in France," Energy Policy, Elsevier, vol. 35(10), pages 4772-4778, October.
    13. Kivyiro, Pendo & Arminen, Heli, 2014. "Carbon dioxide emissions, energy consumption, economic growth, and foreign direct investment: Causality analysis for Sub-Saharan Africa," Energy, Elsevier, vol. 74(C), pages 595-606.
    14. Guglielmo Maria Caporale & Gloria Claudio-Quiroga & Luis A. Gil-Alana, 2019. "CO2 Emissions and GDP: Evidence from China," CESifo Working Paper Series 7881, CESifo.
    15. Mahalik, Mantu Kumar & Villanthenkodath, Muhammed Ashiq & Mallick, Hrushikesh & Gupta, Monika, 2021. "Assessing the effectiveness of total foreign aid and foreign energy aid inflows on environmental quality in India," Energy Policy, Elsevier, vol. 149(C).
    16. Sudeshna Ghosh, 2019. "Environmental Pollution, Income Inequality, and Household Energy Consumption: Evidence from the United Kingdom," Journal of International Commerce, Economics and Policy (JICEP), World Scientific Publishing Co. Pte. Ltd., vol. 10(02), pages 1-31, June.
    17. Jeyhun I. Mikayilov & Marzio Galeotti & Fakhri J. Hasanov, 2018. "The Impact of Economic Growth on CO2 Emissions in Azerbaijan," IEFE Working Papers 102, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
    18. Petar Mitić & Olja Munitlak Ivanović & Aleksandar Zdravković, 2017. "A Cointegration Analysis of Real GDP and CO 2 Emissions in Transitional Countries," Sustainability, MDPI, vol. 9(4), pages 1-18, April.
    19. Bölük, Gülden & Mert, Mehmet, 2015. "The renewable energy, growth and environmental Kuznets curve in Turkey: An ARDL approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 587-595.
    20. Saboori, Behnaz & Sulaiman, Jamalludin & Mohd, Saidatulakmal, 2012. "Economic growth and CO2 emissions in Malaysia: A cointegration analysis of the Environmental Kuznets Curve," Energy Policy, Elsevier, vol. 51(C), pages 184-191.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:11129-:d:1195892. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.