IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i13p10440-d1185462.html
   My bibliography  Save this article

Impact of China’s Low-Carbon City Pilot Policies on Enterprise Energy Efficiency

Author

Listed:
  • Xiaohong Xiao

    (School of Business Administration, Guizhou University of Finance and Economics, Guiyang 550031, China)

  • Gailei He

    (School of Business Administration, Guizhou University of Finance and Economics, Guiyang 550031, China)

  • Shuo Zhang

    (Smart City Research Institute, University of Science and Technology of China, Wuhu 241000, China)

  • Simeng Zhang

    (Smart City Research Institute, University of Science and Technology of China, Wuhu 241000, China)

Abstract

An increase in energy efficiency is an essential element and a powerful driving force for the in-depth implementation of the sustainable development strategies necessary in accelerating the promotion of green, circular, and low-carbon development, as well as to promote the comprehensive green transformation of economic and social development. An important question with regard to this paper is thus: can the low-carbon city pilot policy promote energy efficiency improvement, and if so, through what mechanisms? This paper uses the SBM–Malmquist–Luenberger index method to measure the green total factor energy efficiency and examines the impact and pathways of the pilot policy on the energy efficiency of enterprises, using a sample of listed manufacturing enterprises in 230 prefecture-level cities in China from 2007 to 2020. Additionally, the time-varying difference-in-differences (DID) method is approached in this paper. After replacing energy efficiency with slack-based measure directional distance function model (SBM-DDF) and conducting a series of robustness tests, this study found that the pilot policy can significantly improve the energy efficiency of manufacturing enterprises. A mechanism test shows that this policy can promote green innovation effect and agglomeration effect to improve enterprises’ energy efficiency. The low-carbon city pilot policy has contributed the most to energy efficiency through enterprise investment in green innovation and manufacturing agglomeration. Heterogeneity analysis found that policy effect differs among firms in terms of different sizes and properties, and the pilot policy plays different roles among different regions. This paper provides firm-level theoretical support and empirical evidence for evaluating low-carbon city pilot policy and offers policy recommendations.

Suggested Citation

  • Xiaohong Xiao & Gailei He & Shuo Zhang & Simeng Zhang, 2023. "Impact of China’s Low-Carbon City Pilot Policies on Enterprise Energy Efficiency," Sustainability, MDPI, vol. 15(13), pages 1-24, July.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10440-:d:1185462
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/13/10440/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/13/10440/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tang, Maogang & Li, Xiuzhen & Zhang, Yun & Wu, Yingtao & Wu, Baijun, 2020. "From command-and-control to market-based environmental policies: Optimal transition timing and China’s heterogeneous environmental effectiveness," Economic Modelling, Elsevier, vol. 90(C), pages 1-10.
    2. Jacobson, Louis S & LaLonde, Robert J & Sullivan, Daniel G, 1993. "Earnings Losses of Displaced Workers," American Economic Review, American Economic Association, vol. 83(4), pages 685-709, September.
    3. Louis S. Jacobson & Robert J. LaLonde & Daniel G. Sullivan, 1993. "Long-term earnings losses of high-seniority displaced workers," Economic Perspectives, Federal Reserve Bank of Chicago, vol. 17(Nov), pages 2-20.
    4. Hancevic, Pedro Ignacio, 2016. "Environmental regulation and productivity: The case of electricity generation under the CAAA-1990," Energy Economics, Elsevier, vol. 60(C), pages 131-143.
    5. Pan, Xiongfeng & Guo, Shucen & Han, Cuicui & Wang, Mengyang & Song, Jinbo & Liao, Xianchun, 2020. "Influence of FDI quality on energy efficiency in China based on seemingly unrelated regression method," Energy, Elsevier, vol. 192(C).
    6. Freeman, C., 1991. "Networks of innovators: A synthesis of research issues," Research Policy, Elsevier, vol. 20(5), pages 499-514, October.
    7. Cayir Ervural, Beyzanur & Zaim, Selim & Delen, Dursun, 2018. "A two-stage analytical approach to assess sustainable energy efficiency," Energy, Elsevier, vol. 164(C), pages 822-836.
    8. Fan, Fei & Dai, Shangze & Yang, Bo & Ke, Haiqian, 2023. "Urban density, directed technological change, and carbon intensity: An empirical study based on Chinese cities," Technology in Society, Elsevier, vol. 72(C).
    9. Wu, Haitao & Hao, Yu & Ren, Siyu, 2020. "How do environmental regulation and environmental decentralization affect green total factor energy efficiency: Evidence from China," Energy Economics, Elsevier, vol. 91(C).
    10. Meredith Fowlie & Michael Greenstone & Catherine Wolfram, 2018. "Do Energy Efficiency Investments Deliver? Evidence from the Weatherization Assistance Program," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 133(3), pages 1597-1644.
    11. Jingbo Cui & Junjie Zhang & Yang Zheng, 2018. "Carbon Pricing Induces Innovation: Evidence from China's Regional Carbon Market Pilots," AEA Papers and Proceedings, American Economic Association, vol. 108, pages 453-457, May.
    12. Bart Bossink, 2002. "A Dutch public-private strategy for innovation in sustainable construction," Construction Management and Economics, Taylor & Francis Journals, vol. 20(7), pages 633-642.
    13. Gehrsitz, Markus, 2017. "The effect of low emission zones on air pollution and infant health," Journal of Environmental Economics and Management, Elsevier, vol. 83(C), pages 121-144.
    14. Curtis, E. Mark & Lee, Jonathan M., 2019. "When do environmental regulations backfire? Onsite industrial electricity generation, energy efficiency and policy instruments," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 174-194.
    15. Pan, Xiongfeng & Ai, Bowei & Li, Changyu & Pan, Xianyou & Yan, Yaobo, 2019. "Dynamic relationship among environmental regulation, technological innovation and energy efficiency based on large scale provincial panel data in China," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 428-435.
    16. Xie, Rong-hui & Yuan, Yi-jun & Huang, Jing-jing, 2017. "Different Types of Environmental Regulations and Heterogeneous Influence on “Green” Productivity: Evidence from China," Ecological Economics, Elsevier, vol. 132(C), pages 104-112.
    17. Zhu, Chen & Lee, Chien-Chiang, 2022. "The effects of low-carbon pilot policy on technological innovation: Evidence from prefecture-level data in China," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    18. Yang, Shubo & Jahanger, Atif & Hossain, Mohammad Razib, 2023. "How effective has the low-carbon city pilot policy been as an environmental intervention in curbing pollution? Evidence from Chinese industrial enterprises," Energy Economics, Elsevier, vol. 118(C).
    19. Allen J. Scott, 2012. "Triumph of the City: How Our Greatest Invention Makes Us Richer, Smarter, Greener, Healthier, and Happier – By Edward Glaeser," Economic Geography, Clark University, vol. 88(1), pages 97-100, January.
    20. Song, Qijiao & Qin, Ming & Wang, Ruichen & Qi, Ye, 2020. "How does the nested structure affect policy innovation?: Empirical research on China's low carbon pilot cities," Energy Policy, Elsevier, vol. 144(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Duan & Yu, Nizhou & Wan, Hong, 2022. "Does water rights trading affect corporate investment? The role of resource allocation and risk mitigation channels," Economic Modelling, Elsevier, vol. 117(C).
    2. Wang, Ying & Deng, Xiangzheng & Zhang, Hongwei & Liu, Yujie & Yue, Tianxiang & Liu, Gang, 2022. "Energy endowment, environmental regulation, and energy efficiency: Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    3. Jian Song & Jing Wang & Zhe Chen, 2022. "How Low-Carbon Pilots Affect Chinese Urban Energy Efficiency: An Explanation from Technological Progress," IJERPH, MDPI, vol. 19(23), pages 1, November.
    4. Li, Bo & Han, Yukai & Wang, Chensheng & Sun, Wei, 2022. "Did civilized city policy improve energy efficiency of resource-based cities? Prefecture-level evidence from China," Energy Policy, Elsevier, vol. 167(C).
    5. Yi Li & Lili Ding & Yongliang Yang, 2020. "Can the Introduction of an Environmental Target Assessment Policy Improve the TFP of Textile Enterprises? A Quasi-Natural Experiment Based on the Huai River Basin in China," Sustainability, MDPI, vol. 12(4), pages 1-19, February.
    6. Zhang, Hua & Xu, Tiantian & Feng, Chao, 2022. "Does public participation promote environmental efficiency? Evidence from a quasi-natural experiment of environmental information disclosure in China," Energy Economics, Elsevier, vol. 108(C).
    7. Weijia Zhuo, 2023. "Environmental regulation and corporate sustainability: Evidence from green innovation," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 30(4), pages 1723-1737, July.
    8. Chen, Zhe & Song, Pei & Wang, Baolu, 2021. "Carbon emissions trading scheme, energy efficiency and rebound effect – Evidence from China's provincial data," Energy Policy, Elsevier, vol. 157(C).
    9. Tian, Ying & Feng, Chao, 2022. "The internal-structural effects of different types of environmental regulations on China's green total-factor productivity," Energy Economics, Elsevier, vol. 113(C).
    10. Liu, Cenjie & Fang, Jiayu & Xie, Rui, 2021. "Energy policy and corporate financial performance: Evidence from China's 11th five-year plan," Energy Economics, Elsevier, vol. 93(C).
    11. Zhou, Chaobo & Qi, Shaozhou, 2022. "Has the pilot carbon trading policy improved China's green total factor energy efficiency?," Energy Economics, Elsevier, vol. 114(C).
    12. Liu, Xiaoguang & Ji, Qiang & Yu, Jian, 2021. "Sustainable development goals and firm carbon emissions: Evidence from a quasi-natural experiment in China," Energy Economics, Elsevier, vol. 103(C).
    13. Yu Hao & Jingwen Huang & Yunxia Guo & Haitao Wu & Siyu Ren, 2022. "Does the legacy of state planning put pressure on ecological efficiency? Evidence from China," Business Strategy and the Environment, Wiley Blackwell, vol. 31(7), pages 3100-3121, November.
    14. Guo, Ran & Yuan, Yijun, 2020. "Different types of environmental regulations and heterogeneous influence on energy efficiency in the industrial sector: Evidence from Chinese provincial data," Energy Policy, Elsevier, vol. 145(C).
    15. Cui, Huanyu & Cao, Yuequn, 2023. "How can market-oriented environmental regulation improve urban energy efficiency? Evidence from quasi-experiment in China's SO2 trading emissions system," Energy, Elsevier, vol. 278(C).
    16. Yuxin Fang & Hongjun Cao, 2022. "Environmental Decentralization, Heterogeneous Environmental Regulation, and Green Total Factor Productivity—Evidence from China," Sustainability, MDPI, vol. 14(18), pages 1-20, September.
    17. Wang, Zongrun & Fu, Haiqin & Ren, Xiaohang, 2023. "Political connections and corporate carbon emission: New evidence from Chinese industrial firms," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    18. Lyu, Chaofeng & Xie, Zhe & Li, Zhi, 2022. "Market supervision, innovation offsets and energy efficiency: Evidence from environmental pollution liability insurance in China," Energy Policy, Elsevier, vol. 171(C).
    19. Wu, Haitao & Xue, Yan & Hao, Yu & Ren, Siyu, 2021. "How does internet development affect energy-saving and emission reduction? Evidence from China," Energy Economics, Elsevier, vol. 103(C).
    20. Xianghua Yue & Shikuan Zhao & Xin Ding & Long Xin, 2022. "How the Pilot Low-Carbon City Policy Promotes Urban Green Innovation: Based on Temporal-Spatial Dual Perspectives," IJERPH, MDPI, vol. 20(1), pages 1-20, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10440-:d:1185462. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.