IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i10p8412-d1152835.html
   My bibliography  Save this article

Outdoor Thermal Comfort Integrated with Energy Consumption for Urban Block Design Optimization: A Study of the Hot-Summer Mediterranean City of Irbid, Jordan

Author

Listed:
  • Mohammad Mazen Khraiwesh

    (School of Architecture, Tianjin University, Weijin Road Campus, Tianjin 300072, China)

  • Paolo Vincenzo Genovese

    (College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China)

Abstract

With an increasing awareness of urban health and well-being, this study highlights the growing importance of considering environmental quality in urban design beyond mere energy performance. This study integrates outdoor and indoor quality by investigating the effect of design parameters at an urban block scale (building form restricted to width and length as rectangular and square, building orientation, block orientation, building combination, building height, facade length, built-up percentage, setbacks, and canyon aspect ratio) on outdoor thermal comfort and energy use intensity. In addition, it explains the different correlations between outdoor thermal comfort and energy use intensity in different urban block designs in a hot-summer Mediterranean climate in Jordan. The study adopts a performance-driven approach using simulation tools of Ladybug, Honeybee, Dragonfly, and Eddy3d plugins across the grasshopper interface and evaluates 59 different urban block designs with nine different orientations (0°, 1°, 45°, 85°, 87°, 90°, 355°, 358°, and 359°). The results show that there is a positive correlation between the canyon aspect ratio and the environmental performance of the urban block designs. North–south street canyons are more effective at enhancing microclimates. Negatively increasing the street aspect ratio by more than four affected outdoor thermal comfort by increasing longwave radiation. Further results suggest a positive correlation between the compactness of urban blocks and their environmental performance, with north–south street canyons found to be more effective in enhancing microclimates. The study emphasizes the need to understand the distribution of open spaces formed by buildings and to strike a balance between day and night, as well as summer and winter conditions in outdoor spaces.

Suggested Citation

  • Mohammad Mazen Khraiwesh & Paolo Vincenzo Genovese, 2023. "Outdoor Thermal Comfort Integrated with Energy Consumption for Urban Block Design Optimization: A Study of the Hot-Summer Mediterranean City of Irbid, Jordan," Sustainability, MDPI, vol. 15(10), pages 1-28, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:8412-:d:1152835
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/10/8412/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/10/8412/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hikmat H. Ali & Fahmi A. Abu Al-Rub & Bashar Shboul & Hind Al Moumani, 2020. "Evaluation of Near-net-zero-energy Building Strategies: A Case Study on Residential Buildings in Jordan," International Journal of Energy Economics and Policy, Econjournals, vol. 10(6), pages 325-336.
    2. Andreou, E. & Axarli, K., 2012. "Investigation of urban canyon microclimate in traditional and contemporary environment. Experimental investigation and parametric analysis," Renewable Energy, Elsevier, vol. 43(C), pages 354-363.
    3. Yasser Ibrahim & Tristan Kershaw & Paul Shepherd & David Coley, 2021. "On the Optimisation of Urban form Design, Energy Consumption and Outdoor Thermal Comfort Using a Parametric Workflow in a Hot Arid Zone," Energies, MDPI, vol. 14(13), pages 1-22, July.
    4. Xiaodong Xu & Chenhuan Yin & Wei Wang & Ning Xu & Tianzhen Hong & Qi Li, 2019. "Revealing Urban Morphology and Outdoor Comfort through Genetic Algorithm-Driven Urban Block Design in Dry and Hot Regions of China," Sustainability, MDPI, vol. 11(13), pages 1-19, July.
    5. Yu, Yantuan & Zhang, Ning & Kim, Jong Dae, 2020. "Impact of urbanization on energy demand: An empirical study of the Yangtze River Economic Belt in China," Energy Policy, Elsevier, vol. 139(C).
    6. Jamei, Elmira & Rajagopalan, Priyadarsini & Seyedmahmoudian, Mohammadmehdi & Jamei, Yashar, 2016. "Review on the impact of urban geometry and pedestrian level greening on outdoor thermal comfort," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1002-1017.
    7. Alzoubi, Hussain H. & Alshboul, Abdulsalam A., 2010. "Low energy architecture and solar rights: Restructuring urban regulations, view from Jordan," Renewable Energy, Elsevier, vol. 35(2), pages 333-342.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Hongjie & Yao, Runming & Luo, Qing & Wang, Wenbo, 2022. "A mathematical model for a rapid calculation of the urban canyon albedo and its applications," Renewable Energy, Elsevier, vol. 197(C), pages 836-851.
    2. Patryk Antoszewski & Michał Krzyżaniak & Dariusz Świerk, 2022. "The Future of Climate-Resilient and Climate-Neutral City in the Temperate Climate Zone," IJERPH, MDPI, vol. 19(7), pages 1-60, April.
    3. Wang, Xiong & Wang, Xiao & Ren, Xiaohang & Wen, Fenghua, 2022. "Can digital financial inclusion affect CO2 emissions of China at the prefecture level? Evidence from a spatial econometric approach," Energy Economics, Elsevier, vol. 109(C).
    4. Razzaq, Asif & Sharif, Arshian & Ozturk, Ilhan & Skare, Marinko, 2022. "Inclusive infrastructure development, green innovation, and sustainable resource management: Evidence from China’s trade-adjusted material footprints," Resources Policy, Elsevier, vol. 79(C).
    5. Rao, Congjun & Zhang, Yue & Wen, Jianghui & Xiao, Xinping & Goh, Mark, 2023. "Energy demand forecasting in China: A support vector regression-compositional data second exponential smoothing model," Energy, Elsevier, vol. 263(PC).
    6. Bonggeun Song & Kyunghun Park, 2019. "Analysis of Spatiotemporal Urban Temperature Characteristics by Urban Spatial Patterns in Changwon City, South Korea," Sustainability, MDPI, vol. 11(14), pages 1-21, July.
    7. Taleghani, Mohammad, 2018. "Outdoor thermal comfort by different heat mitigation strategies- A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2011-2018.
    8. Suripto & Supriyanto, 2021. "The Effect of the COVID-19 Pandemic on Stock Prices with the Event Window Approach: A Case Study of State Gas Companies, in the Energy Sector," International Journal of Energy Economics and Policy, Econjournals, vol. 11(3), pages 155-162.
    9. Renato Soares & Helena Corvacho & Fernando Alves, 2021. "Summer Thermal Conditions in Outdoor Public Spaces: A Case Study in a Mediterranean Climate," Sustainability, MDPI, vol. 13(10), pages 1-26, May.
    10. Ramesh Chandra Das & Tonmoy Chatterjee & Enrico Ivaldi, 2022. "Nexus between Housing Price and Magnitude of Pollution: Evidence from the Panel of Some High- and-Low Polluting Cities of the World," Sustainability, MDPI, vol. 14(15), pages 1-18, July.
    11. Liuying Wang & Gaoyuan Wang & Tian Chen & Junnan Liu, 2023. "The Regulating Effect of Urban Large Planar Water Bodies on Residential Heat Islands: A Case Study of Meijiang Lake in Tianjin," Land, MDPI, vol. 12(12), pages 1-22, December.
    12. Shujing Fu & Xuexia Zhang & Wenhui Kuang & Changqing Guo, 2022. "Characteristics of Changes in Urban Land Use and Efficiency Evaluation in the Qinghai–Tibet Plateau from 1990 to 2020," Land, MDPI, vol. 11(5), pages 1-16, May.
    13. Jamei, E. & Ossen, D.R. & Seyedmahmoudian, M. & Sandanayake, M. & Stojcevski, A. & Horan, B., 2020. "Urban design parameters for heat mitigation in tropics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    14. Nayara R. M. Sakiyama & Joyce C. Carlo & Leonardo Mazzaferro & Harald Garrecht, 2021. "Building Optimization through a Parametric Design Platform: Using Sensitivity Analysis to Improve a Radial-Based Algorithm Performance," Sustainability, MDPI, vol. 13(10), pages 1-25, May.
    15. Andreou, E., 2014. "The effect of urban layout, street geometry and orientation on shading conditions in urban canyons in the Mediterranean," Renewable Energy, Elsevier, vol. 63(C), pages 587-596.
    16. Abdimalik Ali Warsame, 2022. "The Impact of Urbanization on Energy Demand: An Empirical Evidence from Somalia," International Journal of Energy Economics and Policy, Econjournals, vol. 12(1), pages 383-389.
    17. Likai Wang & Patrick Janssen & Kian Wee Chen & Ziyu Tong & Guohua Ji, 2019. "Subtractive Building Massing for Performance-Based Architectural Design Exploration: A Case Study of Daylighting Optimization," Sustainability, MDPI, vol. 11(24), pages 1-20, December.
    18. Pingying Lin & Zhonghua Gou & Stephen Siu-Yu Lau & Hao Qin, 2017. "The Impact of Urban Design Descriptors on Outdoor Thermal Environment: A Literature Review," Energies, MDPI, vol. 10(12), pages 1-19, December.
    19. Ahmed Mohamed Shehata, 2023. "Sustainable-Oriented Development for Urban Interface of Historic Centers," Sustainability, MDPI, vol. 15(3), pages 1-19, February.
    20. Hui Chen & Yin Wei & Yaolin Lin & Wei Yang & Xiaoming Chen & Maria Kolokotroni & Xiaohong Liu & Guoqiang Zhang, 2020. "Investigation on the Thermal Condition of a Traditional Cold-Lane in Summer in Subtropical Humid Climate Region of China," Energies, MDPI, vol. 13(24), pages 1-21, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:8412-:d:1152835. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.