IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v63y2014icp587-596.html
   My bibliography  Save this article

The effect of urban layout, street geometry and orientation on shading conditions in urban canyons in the Mediterranean

Author

Listed:
  • Andreou, E.

Abstract

The paper presents the results of shading analysis which was carried out as part of a wider comparative analysis of two sites with different characteristics in terms of street geometry and urban density. The first experiment site was a traditional settlement in the island of Tinos, Greece, and the second was a relatively newly built part of the capital city of the island. Also a parametric shading analysis was carried out in order to examine a number of parameters that influence shading conditions in urban canyons.

Suggested Citation

  • Andreou, E., 2014. "The effect of urban layout, street geometry and orientation on shading conditions in urban canyons in the Mediterranean," Renewable Energy, Elsevier, vol. 63(C), pages 587-596.
  • Handle: RePEc:eee:renene:v:63:y:2014:i:c:p:587-596
    DOI: 10.1016/j.renene.2013.09.051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148113005302
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2013.09.051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bourbia, F & Awbi, H.B, 2004. "Building cluster and shading in urban canyon for hot dry climate," Renewable Energy, Elsevier, vol. 29(2), pages 249-262.
    2. Andreou, E. & Axarli, K., 2012. "Investigation of urban canyon microclimate in traditional and contemporary environment. Experimental investigation and parametric analysis," Renewable Energy, Elsevier, vol. 43(C), pages 354-363.
    3. Bourbia, F & Awbi, H.B, 2004. "Building cluster and shading in urban canyon for hot dry climate," Renewable Energy, Elsevier, vol. 29(2), pages 291-301.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tian, B. & Loonen, R.C.G.M. & Bognár, Á. & Hensen, J.L.M., 2022. "Impacts of surface model generation approaches on raytracing-based solar potential estimation in urban areas," Renewable Energy, Elsevier, vol. 198(C), pages 804-824.
    2. Zhang, Hongjie & Yao, Runming & Luo, Qing & Wang, Wenbo, 2022. "A mathematical model for a rapid calculation of the urban canyon albedo and its applications," Renewable Energy, Elsevier, vol. 197(C), pages 836-851.
    3. Lee, Kyung Sun & Lee, Jae Wook & Lee, Jae Seung, 2016. "Feasibility study on the relation between housing density and solar accessibility and potential uses," Renewable Energy, Elsevier, vol. 85(C), pages 749-758.
    4. Bouketta, S. & Bouchahm, Y., 2020. "Numerical evaluation of urban geometry's control of wind movements in outdoor spaces during winter period. Case of Mediterranean climate," Renewable Energy, Elsevier, vol. 146(C), pages 1062-1069.
    5. Carlos Rubio-Bellido & Jesus A. Pulido-Arcas & Jose M. Cabeza-Lainez, 2015. "Adaptation Strategies and Resilience to Climate Change of Historic Dwellings," Sustainability, MDPI, vol. 7(4), pages 1-19, March.
    6. Alireza Karimi & Pir Mohammad & Antonio García-Martínez & David Moreno-Rangel & Darya Gachkar & Sadaf Gachkar, 2023. "New developments and future challenges in reducing and controlling heat island effect in urban areas," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 10485-10531, October.
    7. Rodríguez-Algeciras, José & Tablada, Abel & Chaos-Yeras, Mabel & De la Paz, Guillermo & Matzarakis, Andreas, 2018. "Influence of aspect ratio and orientation on large courtyard thermal conditions in the historical centre of Camagüey-Cuba," Renewable Energy, Elsevier, vol. 125(C), pages 840-856.
    8. Pigliautile, Ilaria & Chàfer, Marta & Pisello, Anna Laura & Pérez, Gabriel & Cabeza, Luisa F., 2020. "Inter-building assessment of urban heat island mitigation strategies: Field tests and numerical modelling in a simplified-geometry experimental set-up," Renewable Energy, Elsevier, vol. 147(P1), pages 1663-1675.
    9. Perera, A.T.D. & Javanroodi, Kavan & Nik, Vahid M., 2021. "Climate resilient interconnected infrastructure: Co-optimization of energy systems and urban morphology," Applied Energy, Elsevier, vol. 285(C).
    10. Shareef, Sundus & Altan, Hasim, 2022. "Urban block configuration and the impact on energy consumption: A case study of sinuous morphology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    11. Nasrollahi, Nazanin & Shokri, Elham, 2016. "Daylight illuminance in urban environments for visual comfort and energy performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 861-874.
    12. Ayat Elkhazindar & Sahar N. Kharrufa & Mohammad S. Arar, 2022. "The Effect of Urban Form on the Heat Island Phenomenon and Human Thermal Comfort: A Comparative Study of UAE Residential Sites," Energies, MDPI, vol. 15(15), pages 1-31, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andreou, E., 2013. "Thermal comfort in outdoor spaces and urban canyon microclimate," Renewable Energy, Elsevier, vol. 55(C), pages 182-188.
    2. Bourbia, F. & Boucheriba, F., 2010. "Impact of street design on urban microclimate for semi arid climate (Constantine)," Renewable Energy, Elsevier, vol. 35(2), pages 343-347.
    3. Al-Sallal, Khaled A. & Al-Rais, Laila, 2012. "Outdoor airflow analysis and potential for passive cooling in the modern urban context of Dubai," Renewable Energy, Elsevier, vol. 38(1), pages 40-49.
    4. Yeri Choi & Sugie Lee & Hyunbin Moon, 2018. "Urban Physical Environments and the Duration of High Air Temperature: Focusing on Solar Radiation Trapping Effects," Sustainability, MDPI, vol. 10(12), pages 1-14, December.
    5. Suk-jin Jung & Seong-hwan Yoon, 2018. "Study on the Prediction and Improvement of Indoor Natural Light and Outdoor Comfort in Apartment Complexes Using Daylight Factor and Physiologically Equivalent Temperature Indices," Energies, MDPI, vol. 11(7), pages 1-19, July.
    6. Weixun Lv & Yan Wu & Jianbin Zang, 2021. "A Review on the Dispersion and Distribution Characteristics of Pollutants in Street Canyons and Improvement Measures," Energies, MDPI, vol. 14(19), pages 1-21, September.
    7. Xinyue Wang & Zhengrui Li & Shuangxin Ding & Xiufeng Sun & Hua Qin & Jianwan Ji & Rui Zhang, 2023. "Study on the Relationship between Urban Street-Greenery Rate and Land Surface Temperature Considering Local Climate Zone," IJERPH, MDPI, vol. 20(4), pages 1-21, February.
    8. Sheikh Ahmad Zaki & Siti Wan Syahidah & Mohd Fairuz Shahidan & Mardiana Idayu Ahmad & Fitri Yakub & Mohamad Zaki Hassan & Mohd Yusof Md Daud, 2020. "Assessment of Outdoor Air Temperature with Different Shaded Area within an Urban University Campus in Hot-Humid Climate," Sustainability, MDPI, vol. 12(14), pages 1-24, July.
    9. Krüger, E. & Pearlmutter, D. & Rasia, F., 2010. "Evaluating the impact of canyon geometry and orientation on cooling loads in a high-mass building in a hot dry environment," Applied Energy, Elsevier, vol. 87(6), pages 2068-2078, June.
    10. Mohamed Elhadi Matallah & Djamel Alkama & Jacques Teller & Atef Ahriz & Shady Attia, 2021. "Quantification of the Outdoor Thermal Comfort within Different Oases Urban Fabrics," Sustainability, MDPI, vol. 13(6), pages 1-23, March.
    11. Yeo, In-Ae & Yee, Jurng-Jae, 2014. "A proposal for a site location planning model of environmentally friendly urban energy supply plants using an environment and energy geographical information system (E-GIS) database (DB) and an artifi," Applied Energy, Elsevier, vol. 119(C), pages 99-117.
    12. Andreou, E. & Axarli, K., 2012. "Investigation of urban canyon microclimate in traditional and contemporary environment. Experimental investigation and parametric analysis," Renewable Energy, Elsevier, vol. 43(C), pages 354-363.
    13. Jamei, Elmira & Rajagopalan, Priyadarsini & Seyedmahmoudian, Mohammadmehdi & Jamei, Yashar, 2016. "Review on the impact of urban geometry and pedestrian level greening on outdoor thermal comfort," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1002-1017.
    14. Yasser Ibrahim & Tristan Kershaw & Paul Shepherd & David Coley, 2021. "On the Optimisation of Urban form Design, Energy Consumption and Outdoor Thermal Comfort Using a Parametric Workflow in a Hot Arid Zone," Energies, MDPI, vol. 14(13), pages 1-22, July.
    15. Choi, Yeri & Lee, Sugie, 2020. "The impact of urban physical environments on cooling rates in summer: Focusing on interaction effects with a kernel-based regularized least squares (KRLS) model," Renewable Energy, Elsevier, vol. 149(C), pages 523-534.
    16. Shahrestani, Mehdi & Yao, Runming & Luo, Zhiwen & Turkbeyler, Erdal & Davies, Hywel, 2015. "A field study of urban microclimates in London," Renewable Energy, Elsevier, vol. 73(C), pages 3-9.
    17. Pingying Lin & Zhonghua Gou & Stephen Siu-Yu Lau & Hao Qin, 2017. "The Impact of Urban Design Descriptors on Outdoor Thermal Environment: A Literature Review," Energies, MDPI, vol. 10(12), pages 1-19, December.
    18. Fatima Zahra Ben Ratmia & Atef Ahriz & Giovanni Santi & Soumia Bouzaher & Waqas Ahmed Mahar & Mohamed Akram Eddine Ben Ratmia & Mohamed Elhadi Matallah, 2023. "Street Design Strategies Based on Spatial Configurations and Building External Envelopes in Relation to Outdoor Thermal Comfort in Arid Climates," Sustainability, MDPI, vol. 16(1), pages 1-25, December.
    19. Shiyi Song & Hong Leng & Han Xu & Ran Guo & Yan Zhao, 2020. "Impact of Urban Morphology and Climate on Heating Energy Consumption of Buildings in Severe Cold Regions," IJERPH, MDPI, vol. 17(22), pages 1-24, November.
    20. Hong Jin & Jing Zhao & Siqi Liu & Jian Kang, 2018. "Climate Adaptability Construction Technology of Historic Conservation Areas: The Case Study of the Chinese–Baroque Historic Conservation Area in Harbin," Sustainability, MDPI, vol. 10(10), pages 1-19, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:63:y:2014:i:c:p:587-596. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.