IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i14p5741-d385668.html
   My bibliography  Save this article

Assessment of Outdoor Air Temperature with Different Shaded Area within an Urban University Campus in Hot-Humid Climate

Author

Listed:
  • Sheikh Ahmad Zaki

    (Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia)

  • Siti Wan Syahidah

    (Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia)

  • Mohd Fairuz Shahidan

    (Faculty of Design and Architecture, Universiti Putra Malaysia, Serdang 43400, Malaysia)

  • Mardiana Idayu Ahmad

    (Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia)

  • Fitri Yakub

    (Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia)

  • Mohamad Zaki Hassan

    (Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, Jalan Semarak, Kuala Lumpur 54100, Malaysia)

  • Mohd Yusof Md Daud

    (Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, Jalan Semarak, Kuala Lumpur 54100, Malaysia)

Abstract

This study investigated the variation of outdoor air temperature in the shaded area covered by buildings in an urban university campus in Malaysia. In-situ field measurements were conducted to measure the distribution of outdoor air temperature at eight different locations for seven days. Meanwhile, the building-induced shadows were generated using the AutoCAD Revit software to investigate the air temperature change. The study used four urban morphological parameters namely building to greenery ratio, sky view factor (SVF), and height-to-street width ( H / W ) ratio. The relationship between building-induced shadow and outdoor air temperature ( T out ) obtained from the in-situ measurement was investigated. The results showed that the building-induced shadows could lower air temperature. It can be noted that a high ratio of building to greenery resulted in a higher air temperature. In contrast, the area with a low SVF value due to the combination of prolonged shading by buildings and trees had a lower air temperature. Thus, the area with a high building ratio, low greenery ratio, higher SVF value, and low H / W ratio potentially has a higher outdoor air temperature. Conclusively, combination of building shading created by appropriate ratio of building morphology and sufficient greenery able to improve the microclimate of a campus area.

Suggested Citation

  • Sheikh Ahmad Zaki & Siti Wan Syahidah & Mohd Fairuz Shahidan & Mardiana Idayu Ahmad & Fitri Yakub & Mohamad Zaki Hassan & Mohd Yusof Md Daud, 2020. "Assessment of Outdoor Air Temperature with Different Shaded Area within an Urban University Campus in Hot-Humid Climate," Sustainability, MDPI, vol. 12(14), pages 1-24, July.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:14:p:5741-:d:385668
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/14/5741/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/14/5741/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sheikh Ahmad Zaki & Nurnida Elmira Othman & Siti Wan Syahidah & Fitri Yakub & Firdaus Muhammad-Sukki & Jorge Alfredo Ardila-Rey & Mohd Fairuz Shahidan & Ahmad Shakir Mohd Saudi, 2020. "Effects of Urban Morphology on Microclimate Parameters in an Urban University Campus," Sustainability, MDPI, vol. 12(7), pages 1-17, April.
    2. Bourbia, F & Awbi, H.B, 2004. "Building cluster and shading in urban canyon for hot dry climate," Renewable Energy, Elsevier, vol. 29(2), pages 249-262.
    3. Jamei, Elmira & Rajagopalan, Priyadarsini & Seyedmahmoudian, Mohammadmehdi & Jamei, Yashar, 2016. "Review on the impact of urban geometry and pedestrian level greening on outdoor thermal comfort," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1002-1017.
    4. Sheikh Ahmad Zaki & Hai Jian Toh & Fitri Yakub & Ahmad Shakir Mohd Saudi & Jorge Alfredo Ardila-Rey & Firdaus Muhammad-Sukki, 2020. "Effects of Roadside Trees and Road Orientation on Thermal Environment in a Tropical City," Sustainability, MDPI, vol. 12(3), pages 1-23, February.
    5. Bourbia, F. & Boucheriba, F., 2010. "Impact of street design on urban microclimate for semi arid climate (Constantine)," Renewable Energy, Elsevier, vol. 35(2), pages 343-347.
    6. Bourbia, F & Awbi, H.B, 2004. "Building cluster and shading in urban canyon for hot dry climate," Renewable Energy, Elsevier, vol. 29(2), pages 291-301.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruixin Li & Yiwan Zhao & Gaochong Lv & Weilin Li & Jiayin Zhu & Olga L. Bantserova, 2021. "Thermal Performance Analysis of Heat Collection Wall in High-Rise Building Based on the Measurement of Near-Wall Microclimate," Energies, MDPI, vol. 14(7), pages 1-24, April.
    2. Boni Sena & Sheikh Ahmad Zaki & Hom Bahadur Rijal & Jorge Alfredo Ardila-Rey & Nelidya Md Yusoff & Fitri Yakub & Farah Liana & Mohamad Zaki Hassan, 2021. "Development of an Electrical Energy Consumption Model for Malaysian Households, Based on Techno-Socioeconomic Determinant Factors," Sustainability, MDPI, vol. 13(23), pages 1-22, November.
    3. Sheikh Ahmad Zaki & Nor Suhada Azid & Mohd Fairuz Shahidan & Mohamad Zaki Hassan & Mohd Yusof Md Daud & Nor Azlina Abu Bakar & Mohamed Sukri Mat Ali & Fitri Yakub, 2020. "Analysis of Urban Morphological Effect on the Microclimate of the Urban Residential Area of Kampung Baru in Kuala Lumpur Using a Geospatial Approach," Sustainability, MDPI, vol. 12(18), pages 1-29, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yasser Ibrahim & Tristan Kershaw & Paul Shepherd & David Coley, 2021. "On the Optimisation of Urban form Design, Energy Consumption and Outdoor Thermal Comfort Using a Parametric Workflow in a Hot Arid Zone," Energies, MDPI, vol. 14(13), pages 1-22, July.
    2. Al-Sallal, Khaled A. & Al-Rais, Laila, 2012. "Outdoor airflow analysis and potential for passive cooling in the modern urban context of Dubai," Renewable Energy, Elsevier, vol. 38(1), pages 40-49.
    3. Yeri Choi & Sugie Lee & Hyunbin Moon, 2018. "Urban Physical Environments and the Duration of High Air Temperature: Focusing on Solar Radiation Trapping Effects," Sustainability, MDPI, vol. 10(12), pages 1-14, December.
    4. Mohamed Elhadi Matallah & Djamel Alkama & Jacques Teller & Atef Ahriz & Shady Attia, 2021. "Quantification of the Outdoor Thermal Comfort within Different Oases Urban Fabrics," Sustainability, MDPI, vol. 13(6), pages 1-23, March.
    5. Jamei, Elmira & Rajagopalan, Priyadarsini & Seyedmahmoudian, Mohammadmehdi & Jamei, Yashar, 2016. "Review on the impact of urban geometry and pedestrian level greening on outdoor thermal comfort," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1002-1017.
    6. Choi, Yeri & Lee, Sugie, 2020. "The impact of urban physical environments on cooling rates in summer: Focusing on interaction effects with a kernel-based regularized least squares (KRLS) model," Renewable Energy, Elsevier, vol. 149(C), pages 523-534.
    7. Andreou, E., 2014. "The effect of urban layout, street geometry and orientation on shading conditions in urban canyons in the Mediterranean," Renewable Energy, Elsevier, vol. 63(C), pages 587-596.
    8. Bourbia, F. & Boucheriba, F., 2010. "Impact of street design on urban microclimate for semi arid climate (Constantine)," Renewable Energy, Elsevier, vol. 35(2), pages 343-347.
    9. Andreou, E., 2013. "Thermal comfort in outdoor spaces and urban canyon microclimate," Renewable Energy, Elsevier, vol. 55(C), pages 182-188.
    10. Suk-jin Jung & Seong-hwan Yoon, 2018. "Study on the Prediction and Improvement of Indoor Natural Light and Outdoor Comfort in Apartment Complexes Using Daylight Factor and Physiologically Equivalent Temperature Indices," Energies, MDPI, vol. 11(7), pages 1-19, July.
    11. Weixun Lv & Yan Wu & Jianbin Zang, 2021. "A Review on the Dispersion and Distribution Characteristics of Pollutants in Street Canyons and Improvement Measures," Energies, MDPI, vol. 14(19), pages 1-21, September.
    12. Xinyue Wang & Zhengrui Li & Shuangxin Ding & Xiufeng Sun & Hua Qin & Jianwan Ji & Rui Zhang, 2023. "Study on the Relationship between Urban Street-Greenery Rate and Land Surface Temperature Considering Local Climate Zone," IJERPH, MDPI, vol. 20(4), pages 1-21, February.
    13. Nazanin Nasrollahi & Amir Ghosouri & Jamal Khodakarami & Mohammad Taleghani, 2020. "Heat-Mitigation Strategies to Improve Pedestrian Thermal Comfort in Urban Environments: A Review," Sustainability, MDPI, vol. 12(23), pages 1-23, November.
    14. Krüger, E. & Pearlmutter, D. & Rasia, F., 2010. "Evaluating the impact of canyon geometry and orientation on cooling loads in a high-mass building in a hot dry environment," Applied Energy, Elsevier, vol. 87(6), pages 2068-2078, June.
    15. Yeo, In-Ae & Yee, Jurng-Jae, 2014. "A proposal for a site location planning model of environmentally friendly urban energy supply plants using an environment and energy geographical information system (E-GIS) database (DB) and an artifi," Applied Energy, Elsevier, vol. 119(C), pages 99-117.
    16. Andreou, E. & Axarli, K., 2012. "Investigation of urban canyon microclimate in traditional and contemporary environment. Experimental investigation and parametric analysis," Renewable Energy, Elsevier, vol. 43(C), pages 354-363.
    17. Zheng Zhu & Jing Liang & Cheng Sun & Yunsong Han, 2020. "Summer Outdoor Thermal Comfort in Urban Commercial Pedestrian Streets in Severe Cold Regions of China," Sustainability, MDPI, vol. 12(5), pages 1-19, March.
    18. Shahrestani, Mehdi & Yao, Runming & Luo, Zhiwen & Turkbeyler, Erdal & Davies, Hywel, 2015. "A field study of urban microclimates in London," Renewable Energy, Elsevier, vol. 73(C), pages 3-9.
    19. Patryk Antoszewski & Michał Krzyżaniak & Dariusz Świerk, 2022. "The Future of Climate-Resilient and Climate-Neutral City in the Temperate Climate Zone," IJERPH, MDPI, vol. 19(7), pages 1-60, April.
    20. Bonggeun Song & Kyunghun Park, 2019. "Analysis of Spatiotemporal Urban Temperature Characteristics by Urban Spatial Patterns in Changwon City, South Korea," Sustainability, MDPI, vol. 11(14), pages 1-21, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:14:p:5741-:d:385668. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.