IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v197y2022icp836-851.html
   My bibliography  Save this article

A mathematical model for a rapid calculation of the urban canyon albedo and its applications

Author

Listed:
  • Zhang, Hongjie
  • Yao, Runming
  • Luo, Qing
  • Wang, Wenbo

Abstract

Urban canyon albedo (UCA) is a primary indicator used to evaluate the impact of urban geometry on radiation absorption. A rapid and effective theoretical calculation for the UCA is helpful in urban design. This research establishes a simplistic but robust mathematical model for calculating the UCA. The model was validated using prior observational studies showing that the maximum root mean square error (RMSE) is 0.03, and the minimum Pearson correlation coefficient (r) is 0.63. The model was then used to evaluate the influence of urban canyon geometry and materials on UCA. The results show that the canyon aspect ratio controls the UCA, especially when the canyon aspect ratio is less than 4. Furthermore, high-albedo facades can effectively increase UCA, and high-albedo pavements are recommended only if the urban canyon aspect ratio is less than 1. Finally, the solar performance of urban canyons on an urban scale was estimated by combining our model with digital elevation model (DEM) data. This study can be used in urban planning to estimate the radiation performance of an urban canyon quickly before full-scale urban thermal environment simulation.

Suggested Citation

  • Zhang, Hongjie & Yao, Runming & Luo, Qing & Wang, Wenbo, 2022. "A mathematical model for a rapid calculation of the urban canyon albedo and its applications," Renewable Energy, Elsevier, vol. 197(C), pages 836-851.
  • Handle: RePEc:eee:renene:v:197:y:2022:i:c:p:836-851
    DOI: 10.1016/j.renene.2022.07.110
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122011132
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.07.110?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rensheng, Chen & Ersi, Kang & Jianping, Yang & Shihua, Lu & Wenzhi, Zhao & Yongjian, Ding, 2004. "Estimation of horizontal diffuse solar radiation with measured daily data in China," Renewable Energy, Elsevier, vol. 29(5), pages 717-726.
    2. Ener Rusen, Selmin & Konuralp, Aycan, 2020. "Quality control of diffuse solar radiation component with satellite-based estimation methods," Renewable Energy, Elsevier, vol. 145(C), pages 1772-1779.
    3. Andreou, E. & Axarli, K., 2012. "Investigation of urban canyon microclimate in traditional and contemporary environment. Experimental investigation and parametric analysis," Renewable Energy, Elsevier, vol. 43(C), pages 354-363.
    4. Benali, L. & Notton, G. & Fouilloy, A. & Voyant, C. & Dizene, R., 2019. "Solar radiation forecasting using artificial neural network and random forest methods: Application to normal beam, horizontal diffuse and global components," Renewable Energy, Elsevier, vol. 132(C), pages 871-884.
    5. Camilo Mora & Bénédicte Dousset & Iain R. Caldwell & Farrah E. Powell & Rollan C. Geronimo & Coral R. Bielecki & Chelsie W. W. Counsell & Bonnie S. Dietrich & Emily T. Johnston & Leo V. Louis & Matthe, 2017. "Global risk of deadly heat," Nature Climate Change, Nature, vol. 7(7), pages 501-506, July.
    6. Xu, Ling & Wang, Jiayu & Xiao, Feipeng & EI-Badawy, Sherif & Awed, Ahmed, 2021. "Potential strategies to mitigate the heat island impacts of highway pavement on megacities with considerations of energy uses," Applied Energy, Elsevier, vol. 281(C).
    7. Jamei, Elmira & Rajagopalan, Priyadarsini & Seyedmahmoudian, Mohammadmehdi & Jamei, Yashar, 2016. "Review on the impact of urban geometry and pedestrian level greening on outdoor thermal comfort," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1002-1017.
    8. Santamouris, M. & Yun, Geun Young, 2020. "Recent development and research priorities on cool and super cool materials to mitigate urban heat island," Renewable Energy, Elsevier, vol. 161(C), pages 792-807.
    9. Pigliautile, Ilaria & Chàfer, Marta & Pisello, Anna Laura & Pérez, Gabriel & Cabeza, Luisa F., 2020. "Inter-building assessment of urban heat island mitigation strategies: Field tests and numerical modelling in a simplified-geometry experimental set-up," Renewable Energy, Elsevier, vol. 147(P1), pages 1663-1675.
    10. Andreou, E., 2014. "The effect of urban layout, street geometry and orientation on shading conditions in urban canyons in the Mediterranean," Renewable Energy, Elsevier, vol. 63(C), pages 587-596.
    11. Yunfei Li & Sebastian Schubert & Jürgen P. Kropp & Diego Rybski, 2020. "On the influence of density and morphology on the Urban Heat Island intensity," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    12. Lontorfos, V. & Efthymiou, C. & Santamouris, M., 2018. "On the time varying mitigation performance of reflective geoengineering technologies in cities," Renewable Energy, Elsevier, vol. 115(C), pages 926-930.
    13. Mohajeri, N. & Gudmundsson, A. & Kunckler, T. & Upadhyay, G. & Assouline, D. & Kämpf, J.H & Scartezzini, J.L., 2019. "A solar-based sustainable urban design: The effects of city-scale street-canyon geometry on solar access in Geneva, Switzerland," Applied Energy, Elsevier, vol. 240(C), pages 173-190.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patryk Antoszewski & Michał Krzyżaniak & Dariusz Świerk, 2022. "The Future of Climate-Resilient and Climate-Neutral City in the Temperate Climate Zone," IJERPH, MDPI, vol. 19(7), pages 1-60, April.
    2. Chiatti, Chiara & Fabiani, Claudia & Bondi, Roberto & Zampini, Giulia & Latterini, Loredana & Pisello, Anna Laura, 2023. "Controlled combination of phosphorescent and fluorescent materials to exploit energy-saving potential in the built environment," Energy, Elsevier, vol. 275(C).
    3. Rodríguez-Algeciras, José & Tablada, Abel & Chaos-Yeras, Mabel & De la Paz, Guillermo & Matzarakis, Andreas, 2018. "Influence of aspect ratio and orientation on large courtyard thermal conditions in the historical centre of Camagüey-Cuba," Renewable Energy, Elsevier, vol. 125(C), pages 840-856.
    4. Abdul Munaf Mohamed Irfeey & Hing-Wah Chau & Mohamed Mahusoon Fathima Sumaiya & Cheuk Yin Wai & Nitin Muttil & Elmira Jamei, 2023. "Sustainable Mitigation Strategies for Urban Heat Island Effects in Urban Areas," Sustainability, MDPI, vol. 15(14), pages 1-26, July.
    5. Mohammad Mazen Khraiwesh & Paolo Vincenzo Genovese, 2023. "Outdoor Thermal Comfort Integrated with Energy Consumption for Urban Block Design Optimization: A Study of the Hot-Summer Mediterranean City of Irbid, Jordan," Sustainability, MDPI, vol. 15(10), pages 1-28, May.
    6. Shareef, Sundus & Altan, Hasim, 2022. "Urban block configuration and the impact on energy consumption: A case study of sinuous morphology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    7. Hassan, Muhammed A. & Akoush, Bassem M. & Abubakr, Mohamed & Campana, Pietro Elia & Khalil, Adel, 2021. "High-resolution estimates of diffuse fraction based on dynamic definitions of sky conditions," Renewable Energy, Elsevier, vol. 169(C), pages 641-659.
    8. Yamashiro, Hirochika & Nonaka, Hirofumi, 2021. "Estimation of processing time using machine learning and real factory data for optimization of parallel machine scheduling problem," Operations Research Perspectives, Elsevier, vol. 8(C).
    9. Makade, Rahul G. & Chakrabarti, Siddharth & Jamil, Basharat & Sakhale, C.N., 2020. "Estimation of global solar radiation for the tropical wet climatic region of India: A theory of experimentation approach," Renewable Energy, Elsevier, vol. 146(C), pages 2044-2059.
    10. Zoé A Hamstead, 2024. "Thermal insecurity: Violence of heat and cold in the urban climate refuge," Urban Studies, Urban Studies Journal Limited, vol. 61(3), pages 531-548, February.
    11. Liu, Yanfeng & Zhou, Yong & Chen, Yaowen & Wang, Dengjia & Wang, Yingying & Zhu, Ying, 2020. "Comparison of support vector machine and copula-based nonlinear quantile regression for estimating the daily diffuse solar radiation: A case study in China," Renewable Energy, Elsevier, vol. 146(C), pages 1101-1112.
    12. Yu. V. Zinchenko & N. E. Terent’ev, 2022. "Risks of Climate Change to Health and Adaptation of the Population: A Review of World Experience and Lessons for Russia," Studies on Russian Economic Development, Springer, vol. 33(6), pages 671-679, December.
    13. SangHyeok Lee & Donghyun Kim, 2022. "Multidisciplinary Understanding of the Urban Heating Problem and Mitigation: A Conceptual Framework for Urban Planning," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    14. Jamei, E. & Ossen, D.R. & Seyedmahmoudian, M. & Sandanayake, M. & Stojcevski, A. & Horan, B., 2020. "Urban design parameters for heat mitigation in tropics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    15. Zander, Kerstin K. & Mathew, Supriya, 2019. "Estimating economic losses from perceived heat stress in urban Malaysia," Ecological Economics, Elsevier, vol. 159(C), pages 84-90.
    16. Andreou, E., 2014. "The effect of urban layout, street geometry and orientation on shading conditions in urban canyons in the Mediterranean," Renewable Energy, Elsevier, vol. 63(C), pages 587-596.
    17. Xing Zhang & Tianjun Zhou & Wenxia Zhang & Liwen Ren & Jie Jiang & Shuai Hu & Meng Zuo & Lixia Zhang & Wenmin Man, 2023. "Increased impact of heat domes on 2021-like heat extremes in North America under global warming," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    18. George M. Stavrakakis & Dimitris A. Katsaprakakis & Konstantinos Braimakis, 2023. "A Computational Fluid Dynamics Modelling Approach for the Numerical Verification of the Bioclimatic Design of a Public Urban Area in Greece," Sustainability, MDPI, vol. 15(15), pages 1-27, July.
    19. Rakin Abrar & Showmitra Kumar Sarkar & Kashfia Tasnim Nishtha & Swapan Talukdar & Shahfahad & Atiqur Rahman & Abu Reza Md Towfiqul Islam & Amir Mosavi, 2022. "Assessing the Spatial Mapping of Heat Vulnerability under Urban Heat Island (UHI) Effect in the Dhaka Metropolitan Area," Sustainability, MDPI, vol. 14(9), pages 1-24, April.
    20. Hui Chen & Yin Wei & Yaolin Lin & Wei Yang & Xiaoming Chen & Maria Kolokotroni & Xiaohong Liu & Guoqiang Zhang, 2020. "Investigation on the Thermal Condition of a Traditional Cold-Lane in Summer in Subtropical Humid Climate Region of China," Energies, MDPI, vol. 13(24), pages 1-21, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:197:y:2022:i:c:p:836-851. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.