IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v161y2020icp792-807.html

Recent development and research priorities on cool and super cool materials to mitigate urban heat island

Author

Listed:
  • Santamouris, M.
  • Yun, Geun Young

Abstract

The urban heat island is increasing the temperature of cities up to 10 °C and has a very important impact on energy, environmental quality and health. Materials used in the building and urban fabric affect the urban thermal balance and contribute highly to urban overheating. The article presents the progress achieved on the design, development and implementation of mitigation materials presenting a low and very low surface temperature. The recent technological progress and developments concerning natural, light colour, IR reflective, PCM doped, thermochromic, fluorescent, photonic and plasmonic materials is presented. Experimental results on the cooling capacity and the thermal performance of conventional and advanced materials are described in a comparative way. It is demonstrated that innovative materials can exhibit sub-ambient surface temperatures and contribute highly to mitigate urban overheating.

Suggested Citation

  • Santamouris, M. & Yun, Geun Young, 2020. "Recent development and research priorities on cool and super cool materials to mitigate urban heat island," Renewable Energy, Elsevier, vol. 161(C), pages 792-807.
  • Handle: RePEc:eee:renene:v:161:y:2020:i:c:p:792-807
    DOI: 10.1016/j.renene.2020.07.109
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812031185X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.07.109?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Santamouris, M., 2013. "Using cool pavements as a mitigation strategy to fight urban heat island—A review of the actual developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 224-240.
    2. Theoni Karlessi & Mat Santamouris, 2015. "Improving the performance of thermochromic coatings with the use of UV and optical filters tested under accelerated aging conditions," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 10(1), pages 45-61.
    3. Anna Laura Pisello & Maria Saliari & Konstantina Vasilakopoulou & Shamila Hadad & Mattheos Santamouris, 2018. "Facing the urban overheating: Recent developments. Mitigation potential and sensitivity of the main technologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(4), July.
    4. Tso, C.Y. & Chan, K.C. & Chao, Christopher Y.H., 2017. "A field investigation of passive radiative cooling under Hong Kong’s climate," Renewable Energy, Elsevier, vol. 106(C), pages 52-61.
    5. Lontorfos, V. & Efthymiou, C. & Santamouris, M., 2018. "On the time varying mitigation performance of reflective geoengineering technologies in cities," Renewable Energy, Elsevier, vol. 115(C), pages 926-930.
    6. Sharma, Atul & Tyagi, V.V. & Chen, C.R. & Buddhi, D., 2009. "Review on thermal energy storage with phase change materials and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 318-345, February.
    7. John Paravantis & Mat Santamouris & Constantinos Cartalis & Chrysanthi Efthymiou & Nikoletta Kontoulis, 2017. "Mortality Associated with High Ambient Temperatures, Heatwaves, and the Urban Heat Island in Athens, Greece," Sustainability, MDPI, vol. 9(4), pages 1-22, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Angeliki Kitsopoulou & Evangelos Bellos & Panagiotis Lykas & Christos Sammoutos & Michail Gr. Vrachopoulos & Christos Tzivanidis, 2023. "A Systematic Analysis of Phase Change Material and Optically Advanced Roof Coatings Integration for Athenian Climatic Conditions," Energies, MDPI, vol. 16(22), pages 1-20, November.
    2. Abdul Munaf Mohamed Irfeey & Hing-Wah Chau & Mohamed Mahusoon Fathima Sumaiya & Cheuk Yin Wai & Nitin Muttil & Elmira Jamei, 2023. "Sustainable Mitigation Strategies for Urban Heat Island Effects in Urban Areas," Sustainability, MDPI, vol. 15(14), pages 1-26, July.
    3. SangHyeok Lee & Donghyun Kim, 2022. "Multidisciplinary Understanding of the Urban Heating Problem and Mitigation: A Conceptual Framework for Urban Planning," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    4. Alessia Di Giuseppe & Marta Cardinali & Beatrice Castellani & Mirko Filipponi & Alberto Maria Gambelli & Lucio Postrioti & Andrea Nicolini & Federico Rossi, 2021. "The Effect of the Substrate on the Optic Performance of Retro-Reflective Coatings: An In-Lab Investigation," Energies, MDPI, vol. 14(10), pages 1-10, May.
    5. Chiatti, Chiara & Fabiani, Claudia & Bondi, Roberto & Zampini, Giulia & Latterini, Loredana & Pisello, Anna Laura, 2023. "Controlled combination of phosphorescent and fluorescent materials to exploit energy-saving potential in the built environment," Energy, Elsevier, vol. 275(C).
    6. George M. Stavrakakis & Dimitris A. Katsaprakakis & Konstantinos Braimakis, 2023. "A Computational Fluid Dynamics Modelling Approach for the Numerical Verification of the Bioclimatic Design of a Public Urban Area in Greece," Sustainability, MDPI, vol. 15(15), pages 1-27, July.
    7. Xiaoyu Cai & Jun Yang & Yuqing Zhang & Xiangming Xiao & Jianhong (Cecilia) Xia, 2023. "Cooling island effect in urban parks from the perspective of internal park landscape," Humanities and Social Sciences Communications, Palgrave Macmillan, vol. 10(1), pages 1-12, December.
    8. Zhang, Hongjie & Yao, Runming & Luo, Qing & Wang, Wenbo, 2022. "A mathematical model for a rapid calculation of the urban canyon albedo and its applications," Renewable Energy, Elsevier, vol. 197(C), pages 836-851.
    9. Alessandro Cannavale & Marco Pugliese & Roberto Stasi & Stefania Liuzzi & Francesco Martellotta & Vincenzo Maiorano & Ubaldo Ayr, 2024. "Effectiveness of Daytime Radiative Sky Cooling in Constructions," Energies, MDPI, vol. 17(13), pages 1-23, June.
    10. Hing-Wah Chau & Majed Abuseif & Shiran Geng & Elmira Jamei, 2025. "Key Barriers and Challenges to Green Infrastructure Implementation: Policy Insights from the Melbourne Case," Land, MDPI, vol. 14(5), pages 1-23, April.
    11. Xinyi Wang & Yuan Chen & Zhichao Wang & Bo Xu & Zhongke Feng, 2024. "Multi-Temporal Analysis of the Impact of Summer Forest Dynamics on Urban Heat Island Effect in Yan’an City," Sustainability, MDPI, vol. 16(8), pages 1-22, April.
    12. Chiatti, Chiara & Fabiani, Claudia & Cotana, Franco & Pisello, Anna Laura, 2021. "Exploring the potential of photoluminescence for urban passive cooling and lighting applications: A new approach towards materials’ optimization," Energy, Elsevier, vol. 231(C).
    13. Chiatti, Chiara & Kousis, Ioannis & Fabiani, Claudia & Pisello, Anna Laura, 2022. "Effect of optimized photoluminescence on luminous and passive cooling potential: A new combined experimental and numerical approach applied to yellow-emitting glass tiles," Renewable Energy, Elsevier, vol. 196(C), pages 28-39.
    14. Angeliki Kitsopoulou & Evangelos Bellos & Christos Tzivanidis, 2024. "An Up-to-Date Review of Passive Building Envelope Technologies for Sustainable Design," Energies, MDPI, vol. 17(16), pages 1-55, August.
    15. Coraline Wyard & Rodolphe Marion & Eric Hallot, 2023. "WaRM: A Roof Material Spectral Library for Wallonia, Belgium," Data, MDPI, vol. 8(3), pages 1-12, March.
    16. Xu, Fusuo & Zhang, Jianshun & Gao, Zhi, 2024. "A case study of the effect of building surface cool and super cool materials on residential neighbourhood energy consumption in Nanjing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stella Tsoka & Katerina Tsikaloudaki & Theodoros Theodosiou, 2019. "Coupling a Building Energy Simulation Tool with a Microclimate Model to Assess the Impact of Cool Pavements on the Building’s Energy Performance Application in a Dense Residential Area," Sustainability, MDPI, vol. 11(9), pages 1-16, April.
    2. Wang, Chenghao & Wang, Zhi-Hua & Kaloush, Kamil E. & Shacat, Joseph, 2021. "Cool pavements for urban heat island mitigation: A synthetic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    3. Stella Tsoka & Katerina Tsikaloudaki & Theodoros Theodosiou & Dimitrios Bikas, 2020. "Urban Warming and Cities’ Microclimates: Investigation Methods and Mitigation Strategies—A Review," Energies, MDPI, vol. 13(6), pages 1-25, March.
    4. Patryk Antoszewski & Dariusz Świerk & Michał Krzyżaniak, 2020. "Statistical Review of Quality Parameters of Blue-Green Infrastructure Elements Important in Mitigating the Effect of the Urban Heat Island in the Temperate Climate (C) Zone," IJERPH, MDPI, vol. 17(19), pages 1-36, September.
    5. Xu, Ling & Wang, Jiayu & Xiao, Feipeng & EI-Badawy, Sherif & Awed, Ahmed, 2021. "Potential strategies to mitigate the heat island impacts of highway pavement on megacities with considerations of energy uses," Applied Energy, Elsevier, vol. 281(C).
    6. Camilo Ramirez & Mario Palacio & Mauricio Carmona, 2020. "Reduced Model and Comparative Analysis of the Thermal Performance of Indirect Solar Dryer with and without PCM," Energies, MDPI, vol. 13(20), pages 1-18, October.
    7. Zhang, Huili & Kong, Weibin & Tan, Tianwei & Baeyens, Jan, 2017. "High-efficiency concentrated solar power plants need appropriate materials for high-temperature heat capture, conveying and storage," Energy, Elsevier, vol. 139(C), pages 52-64.
    8. Hosseinzadeh, Kh. & Moghaddam, M.A. Erfani & Asadi, A. & Mogharrebi, A.R. & Ganji, D.D., 2020. "Effect of internal fins along with Hybrid Nano-Particles on solid process in star shape triplex Latent Heat Thermal Energy Storage System by numerical simulation," Renewable Energy, Elsevier, vol. 154(C), pages 497-507.
    9. Zhang, Ji & Yuan, Jianjuan & Liu, Junwei & Zhou, Zhihua & Sui, Jiyuan & Xing, Jincheng & Zuo, Jian, 2021. "Cover shields for sub-ambient radiative cooling: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    10. Jamshidi, Ali & Kurumisawa, Kiyofumi & Nawa, Toyoharu & Igarashi, Toshifumi, 2016. "Performance of pavements incorporating waste glass: The current state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 211-236.
    11. Turski, Michał & Nogaj, Kinga & Sekret, Robert, 2019. "The use of a PCM heat accumulator to improve the efficiency of the district heating substation," Energy, Elsevier, vol. 187(C).
    12. Mingli Li & Guoqing Gui & Zhibin Lin & Long Jiang & Hong Pan & Xingyu Wang, 2018. "Numerical Thermal Characterization and Performance Metrics of Building Envelopes Containing Phase Change Materials for Energy-Efficient Buildings," Sustainability, MDPI, vol. 10(8), pages 1-23, July.
    13. Sadeghi, Habibollah & Jalali, Ramin & Singh, Rao Martand, 2024. "A review of borehole thermal energy storage and its integration into district heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    14. Tu, Yubin & Zhu, Wei & Lu, Tianqi & Deng, Yuan, 2017. "A novel thermoelectric harvester based on high-performance phase change material for space application," Applied Energy, Elsevier, vol. 206(C), pages 1194-1202.
    15. Ning Li & Yuxiang Tian & Biao Ma & Dongxia Hu, 2022. "Experimental Investigation of Water-Retaining and Mechanical Behaviors of Unbound Granular Materials under Infiltration," Sustainability, MDPI, vol. 14(3), pages 1-17, January.
    16. Ioanna Kyprianou & Despina Serghides & Harriet Thomson & Salvatore Carlucci, 2023. "Learning from the Past: The Impacts of Economic Crises on Energy Poverty Mortality and Rural Vulnerability," Energies, MDPI, vol. 16(13), pages 1-13, July.
    17. Sharif, M.K. Anuar & Al-Abidi, A.A. & Mat, S. & Sopian, K. & Ruslan, M.H. & Sulaiman, M.Y. & Rosli, M.A.M., 2015. "Review of the application of phase change material for heating and domestic hot water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 557-568.
    18. Tian, Y. & Zhao, C.Y., 2011. "A numerical investigation of heat transfer in phase change materials (PCMs) embedded in porous metals," Energy, Elsevier, vol. 36(9), pages 5539-5546.
    19. Lukas Hegner & Stefan Krimmel & Rebecca Ravotti & Dominic Festini & Jörg Worlitschek & Anastasia Stamatiou, 2021. "Experimental Feasibility Study of a Direct Contact Latent Heat Storage Using an Ester as a Bio-Based Storage Material," Energies, MDPI, vol. 14(2), pages 1-26, January.
    20. Koirala, Binod Prasad & van Oost, Ellen & van der Windt, Henny, 2018. "Community energy storage: A responsible innovation towards a sustainable energy system?," Applied Energy, Elsevier, vol. 231(C), pages 570-585.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:161:y:2020:i:c:p:792-807. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.