IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i10p3374-d171183.html
   My bibliography  Save this article

Climate Adaptability Construction Technology of Historic Conservation Areas: The Case Study of the Chinese–Baroque Historic Conservation Area in Harbin

Author

Listed:
  • Hong Jin

    (Heilongjiang Cold Region Architectural Science Key Laboratory, School of Architecture, Harbin Institute of Technology, Harbin 15000, China)

  • Jing Zhao

    (Heilongjiang Cold Region Architectural Science Key Laboratory, School of Architecture, Harbin Institute of Technology, Harbin 15000, China)

  • Siqi Liu

    (Heilongjiang Cold Region Architectural Science Key Laboratory, School of Architecture, Harbin Institute of Technology, Harbin 15000, China)

  • Jian Kang

    (Heilongjiang Cold Region Architectural Science Key Laboratory, School of Architecture, Harbin Institute of Technology, Harbin 15000, China
    UCL Institute for Environmental Design and Engineering, The Bartlett, University College London (UCL), Central House, 14 Upper Woburn Place, London WC1H0NN, UK)

Abstract

In recent years, the conflict between human activities and the natural environment has led to global warming and extreme weather, which has provoked people into thinking about the climate adaptability of buildings. Historical blocks are usually built and designed based on the social environment and climatic conditions at that time; therefore, they generally contain the construction techniques relevant to dealing with the local climate. The study aims to study the microclimate characteristics of a historic conservation area in a severe cold region and to explore how it attempted to achieve climate adaptation. Taking the Chinese–Baroque historic conservation area in Harbin as an example, this paper analyzed and studied the climate adaptability technology and excavated the suitable technology for the block to deal with a severe cold climate through research, field measurements, and numerical simulation. The results showed that compared with a certain modern urban area in the city, the Chinese–Baroque historic conservation area had better ability to resist wind and cold. The compact layout of the block could reduce heat loss and keep out the cold by effectively resisting the cold wind from permeating inside. Compared with the T-shaped and L-shaped courtyards, the rectangular courtyard occupies the largest proportion and a rectangular courtyard enclosed by buildings on all sides had better windbreak performance. Furthermore, when the courtyard space was enclosed by four sides and the courtyard width was the same, when the plane aspect ratio was smaller, the maximum wind speed of the inner courtyard was smaller. The squares in the block had a good performance in cold resistance. At the same scale, the higher the degree of enclosure of the square, the lower the internal wind speed. This study will provide a reference for urban planning and architectural design in severe cold regions.

Suggested Citation

  • Hong Jin & Jing Zhao & Siqi Liu & Jian Kang, 2018. "Climate Adaptability Construction Technology of Historic Conservation Areas: The Case Study of the Chinese–Baroque Historic Conservation Area in Harbin," Sustainability, MDPI, vol. 10(10), pages 1-19, September.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:10:p:3374-:d:171183
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/10/3374/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/10/3374/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andreou, E. & Axarli, K., 2012. "Investigation of urban canyon microclimate in traditional and contemporary environment. Experimental investigation and parametric analysis," Renewable Energy, Elsevier, vol. 43(C), pages 354-363.
    2. Hong Jin & Zheming Liu & Yumeng Jin & Jian Kang & Jing Liu, 2017. "The Effects of Residential Area Building Layout on Outdoor Wind Environment at the Pedestrian Level in Severe Cold Regions of China," Sustainability, MDPI, vol. 9(12), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheming Liu & Yumeng Jin & Hong Jin, 2019. "The Effects of Different Space Forms in Residential Areas on Outdoor Thermal Comfort in Severe Cold Regions of China," IJERPH, MDPI, vol. 16(20), pages 1-20, October.
    2. Tao Yu & Qi Tang & Yongxiang Wu & Yaowu Wang & Zezhou Wu, 2019. "What Determines the Success of Culture-Led Regeneration Projects in China?," Sustainability, MDPI, vol. 11(18), pages 1-21, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andreou, E., 2014. "The effect of urban layout, street geometry and orientation on shading conditions in urban canyons in the Mediterranean," Renewable Energy, Elsevier, vol. 63(C), pages 587-596.
    2. Fatima Zahra Ben Ratmia & Atef Ahriz & Giovanni Santi & Soumia Bouzaher & Waqas Ahmed Mahar & Mohamed Akram Eddine Ben Ratmia & Mohamed Elhadi Matallah, 2023. "Street Design Strategies Based on Spatial Configurations and Building External Envelopes in Relation to Outdoor Thermal Comfort in Arid Climates," Sustainability, MDPI, vol. 16(1), pages 1-25, December.
    3. Komi Bernard Bedra & Bohong Zheng & Jiayu Li & Xi Luo, 2023. "A Parametric-Simulation Method to Study the Interconnections between Urban-Street-Morphology Indicators and Their Effects on Pedestrian Thermal Comfort in Tropical Summer," Sustainability, MDPI, vol. 15(11), pages 1-23, May.
    4. Jose-Manuel Almodovar-Melendo & Joseph-Maria Cabeza-Lainez, 2018. "Environmental Features of Chinese Architectural Heritage: The Standardization of Form in the Pursuit of Equilibrium with Nature," Sustainability, MDPI, vol. 10(7), pages 1-19, July.
    5. Yingjie Jiang & Changguang Wu & Mingjun Teng, 2020. "Impact of Residential Building Layouts on Microclimate in a High Temperature and High Humidity Region," Sustainability, MDPI, vol. 12(3), pages 1-16, February.
    6. Shiyi Song & Hong Leng & Han Xu & Ran Guo & Yan Zhao, 2020. "Impact of Urban Morphology and Climate on Heating Energy Consumption of Buildings in Severe Cold Regions," IJERPH, MDPI, vol. 17(22), pages 1-24, November.
    7. Golnoosh Manteghi & Hasanuddin limit & Dilshan Remaz, 2015. "Water Bodies an Urban Microclimate: A Review," Modern Applied Science, Canadian Center of Science and Education, vol. 9(6), pages 1-1, June.
    8. Randa Osama Shata & Ayman Hassaan Mahmoud & Mohammad Fahmy, 2021. "Correlating the Sky View Factor with the Pedestrian Thermal Environment in a Hot Arid University Campus Plaza," Sustainability, MDPI, vol. 13(2), pages 1-25, January.
    9. Wei Feng & Wei Ding & Miaomiao Fei & Yujun Yang & Weihan Zou & Ling Wang & Meng Zhen, 2021. "Effects of traditional block morphology on wind environment at the pedestrian level in cold regions of Xi’an, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 3218-3235, March.
    10. Heli Lu & Menglin Xia & Ziyuan Qin & Siqi Lu & Ruimin Guan & Yuna Yang & Changhong Miao & Taizheng Chen, 2022. "The Built Environment Assessment of Residential Areas in Wuhan during the Coronavirus Disease (COVID-19) Outbreak," IJERPH, MDPI, vol. 19(13), pages 1-20, June.
    11. Ahmed Yasser Abdelmejeed & Dietwald Gruehn, 2023. "Optimization of Microclimate Conditions Considering Urban Morphology and Trees Using ENVI-Met: A Case Study of Cairo City," Land, MDPI, vol. 12(12), pages 1-34, December.
    12. Zheming Liu & Yumeng Jin & Hong Jin, 2019. "The Effects of Different Space Forms in Residential Areas on Outdoor Thermal Comfort in Severe Cold Regions of China," IJERPH, MDPI, vol. 16(20), pages 1-20, October.
    13. Xiaoyong Zhang & Zhengchao Chen & Yuemin Yue & Xiangkun Qi & Charlie H. Zhang, 2019. "Fusion of Remote Sensing and Internet Data to Calculate Urban Floor Area Ratio," Sustainability, MDPI, vol. 11(12), pages 1-18, June.
    14. Hua Zhang & Minghui Xiong & Bing Chen & Yanfeng Wang, 2022. "Influence of Tropical Cyclones on Outdoor Wind Environment in High-Rise Residential Areas in Zhejiang Province, China," Sustainability, MDPI, vol. 14(7), pages 1-15, March.
    15. Zhang, Hongjie & Yao, Runming & Luo, Qing & Wang, Wenbo, 2022. "A mathematical model for a rapid calculation of the urban canyon albedo and its applications," Renewable Energy, Elsevier, vol. 197(C), pages 836-851.
    16. Pingying Lin & Zhonghua Gou & Stephen Siu-Yu Lau & Hao Qin, 2017. "The Impact of Urban Design Descriptors on Outdoor Thermal Environment: A Literature Review," Energies, MDPI, vol. 10(12), pages 1-19, December.
    17. Andreou, E., 2013. "Thermal comfort in outdoor spaces and urban canyon microclimate," Renewable Energy, Elsevier, vol. 55(C), pages 182-188.
    18. Jou-Man Huang & Liang-Chun Chen, 2020. "A Numerical Study on Mitigation Strategies of Urban Heat Islands in a Tropical Megacity: A Case Study in Kaohsiung City, Taiwan," Sustainability, MDPI, vol. 12(10), pages 1-21, May.
    19. Xiaoyu Ying & Yanling Wang & Wenzhe Li & Ziqiao Liu & Grace Ding, 2020. "Group Layout Pattern and Outdoor Wind Environment of Enclosed Office Buildings in Hangzhou," Energies, MDPI, vol. 13(2), pages 1-16, January.
    20. Yumeng Jin & Hong Jin & Jian Kang & Ziyue Yu, 2020. "Effects of openings on the wind–sound environment in the traditional residential streets in a severe cold city of China," Environment and Planning B, , vol. 47(5), pages 808-825, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:10:p:3374-:d:171183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.