IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i7p1043-d1433397.html
   My bibliography  Save this article

Calculation of the Optimal Scale of Urban Green Space for Alleviating Surface Urban Heat Islands: A Case Study of Xi’an, China

Author

Listed:
  • Jianxin Zhang

    (School of Architecture, Chang’an University, Xi’an 710064, China)

  • Jingyuan Zhao

    (School of Architecture, Chang’an University, Xi’an 710064, China)

  • Bo Pang

    (School of Architecture, Chang’an University, Xi’an 710064, China)

  • Sisi Liu

    (School of Architecture, Chang’an University, Xi’an 710064, China)

Abstract

Research has demonstrated that urban green spaces play a crucial role in mitigating the severe urban heat island (UHI) effect. However, existing studies often suffer from limitations such as the neglect of the cooling effect of water bodies within the green spaces and incomplete considerations of the overall cooling effect. These limitations may lead to inaccuracies in the research findings. Therefore, the present study takes the city of Xi’an as a case study to explore the optimal green space size for achieving efficient cooling. The results indicate that (i) urban green spaces exhibit robust cooling effects, with variations observed among the various types; (ii) for community parks without water, and for street gardens, the optimal areas of these green spaces are 3.44 and 0.83 hectares, respectively; (iii) for community parks with water, the area of internal water bodies should ideally be maintained at around 29.43% of the total green space area in order to achieve an optimal cooling efficiency. In conclusion, this study introduces a new perspective and new optimization methods for urban green space planning, thereby offering scientific guidance to urban planners in formulating effective development and management policies and urban planning schemes.

Suggested Citation

  • Jianxin Zhang & Jingyuan Zhao & Bo Pang & Sisi Liu, 2024. "Calculation of the Optimal Scale of Urban Green Space for Alleviating Surface Urban Heat Islands: A Case Study of Xi’an, China," Land, MDPI, vol. 13(7), pages 1-30, July.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:7:p:1043-:d:1433397
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/7/1043/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/7/1043/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jamei, Elmira & Rajagopalan, Priyadarsini & Seyedmahmoudian, Mohammadmehdi & Jamei, Yashar, 2016. "Review on the impact of urban geometry and pedestrian level greening on outdoor thermal comfort," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1002-1017.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jamei, E. & Ossen, D.R. & Seyedmahmoudian, M. & Sandanayake, M. & Stojcevski, A. & Horan, B., 2020. "Urban design parameters for heat mitigation in tropics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Hui Chen & Yin Wei & Yaolin Lin & Wei Yang & Xiaoming Chen & Maria Kolokotroni & Xiaohong Liu & Guoqiang Zhang, 2020. "Investigation on the Thermal Condition of a Traditional Cold-Lane in Summer in Subtropical Humid Climate Region of China," Energies, MDPI, vol. 13(24), pages 1-21, December.
    3. Komi Bernard Bedra & Bohong Zheng & Jiayu Li & Xi Luo, 2023. "A Parametric-Simulation Method to Study the Interconnections between Urban-Street-Morphology Indicators and Their Effects on Pedestrian Thermal Comfort in Tropical Summer," Sustainability, MDPI, vol. 15(11), pages 1-23, May.
    4. Shi Yin & Werner Lang & Yiqiang Xiao & Zhao Xu, 2019. "Correlative Impact of Shading Strategies and Configurations Design on Pedestrian-Level Thermal Comfort in Traditional Shophouse Neighbourhoods, Southern China," Sustainability, MDPI, vol. 11(5), pages 1-26, March.
    5. Tianyu Xi & Huan Qin & Weiqing Xu & Tong Yang & Chenxin Hu & Caiyi Zhao & Haoshun Wang, 2023. "Constantly Tracking and Investigating People’s Physical, Psychological, and Thermal Responses in Relation to Park Strolling in a Severe Cold Region of China—A Case Study of Stalin Waterfront Park," Sustainability, MDPI, vol. 15(9), pages 1-28, April.
    6. Kleerekoper, Laura & Taleghani, Mohammad & van den Dobbelsteen, Andy & Hordijk, Truus, 2017. "Urban measures for hot weather conditions in a temperate climate condition: A review study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 515-533.
    7. Ying Zhang & Xijun Hu & Zheng Liu & Chunling Zhou & Hong Liang, 2022. "A Greening Strategy of Mitigation of the Thermal Environment for Coastal Sloping Urban Space," Sustainability, MDPI, vol. 15(1), pages 1-22, December.
    8. Milena Vuckovic & Kristina Kiesel & Ardeshir Mahdavi, 2017. "The Extent and Implications of the Microclimatic Conditions in the Urban Environment: A Vienna Case Study," Sustainability, MDPI, vol. 9(2), pages 1-16, January.
    9. Yunfang Jiang & Luyao Hou & Tiemao Shi & Qinchang Gui, 2017. "A Review of Urban Planning Research for Climate Change," Sustainability, MDPI, vol. 9(12), pages 1-21, December.
    10. Adilkhanova, Indira & Ngarambe, Jack & Yun, Geun Young, 2022. "Recent advances in black box and white-box models for urban heat island prediction: Implications of fusing the two methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    11. Garyfallos Arabatzis & Chrysovalantis Malesios & Georgios Kolkos & Apostolos Kantartzis & Panagiotis Lemonakis, 2024. "Quality of Life in the City of Trikala (Greece): Attitudes and Opinions of Residents on Green Spaces and Cycling Paths," Land, MDPI, vol. 13(11), pages 1-18, November.
    12. Kim, Se Woong & Brown, Robert D., 2021. "Urban heat island (UHI) variations within a city boundary: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    13. Hakima Necira & Mohamed Elhadi Matallah & Soumia Bouzaher & Waqas Ahmed Mahar & Atef Ahriz, 2024. "Effect of Street Asymmetry, Albedo, and Shading on Pedestrian Outdoor Thermal Comfort in Hot Desert Climates," Sustainability, MDPI, vol. 16(3), pages 1-30, February.
    14. Nazanin Nasrollahi & Amir Ghosouri & Jamal Khodakarami & Mohammad Taleghani, 2020. "Heat-Mitigation Strategies to Improve Pedestrian Thermal Comfort in Urban Environments: A Review," Sustainability, MDPI, vol. 12(23), pages 1-23, November.
    15. Junying Li & Jiying Liu & Jelena Srebric & Yuanman Hu & Miao Liu & Lei Su & Shunchang Wang, 2019. "The Effect of Tree-Planting Patterns on the Microclimate within a Courtyard," Sustainability, MDPI, vol. 11(6), pages 1-21, March.
    16. Sharifi, Ayyoob & Yamagata, Yoshiki, 2016. "Principles and criteria for assessing urban energy resilience: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1654-1677.
    17. Mohamed Elhadi Matallah & Waqas Ahmed Mahar & Mushk Bughio & Djamel Alkama & Atef Ahriz & Soumia Bouzaher, 2021. "Prediction of Climate Change Effect on Outdoor Thermal Comfort in Arid Region," Energies, MDPI, vol. 14(16), pages 1-26, August.
    18. Yasser Ibrahim & Tristan Kershaw & Paul Shepherd & David Coley, 2021. "On the Optimisation of Urban form Design, Energy Consumption and Outdoor Thermal Comfort Using a Parametric Workflow in a Hot Arid Zone," Energies, MDPI, vol. 14(13), pages 1-22, July.
    19. Ernesto Antonini & Vincenzo Vodola & Jacopo Gaspari & Michaela De Giglio, 2020. "Outdoor Wellbeing and Quality of Life: A Scientific Literature Review on Thermal Comfort," Energies, MDPI, vol. 13(8), pages 1-22, April.
    20. Zahra Mokhtari & Shahindokht Barghjelveh & Romina Sayahnia & Salman Qureshi & Alessio Russo, 2022. "Dynamic and Heterogeneity of Urban Heat Island: A Theoretical Framework in the Context of Urban Ecology," Land, MDPI, vol. 11(8), pages 1-17, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:7:p:1043-:d:1433397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.