IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v148y2021ics1364032121005438.html
   My bibliography  Save this article

Urban heat island (UHI) variations within a city boundary: A systematic literature review

Author

Listed:
  • Kim, Se Woong
  • Brown, Robert D.

Abstract

Urban heat islands (UHI) in a city tend to vary with changes in time and space. To effectively cope with the accelerating intensity of UHI due to global warming and the resulting damage, it is essential to accurately analyze and understand the spatial and temporal variations of UHI. This study conducted a systematic literature review (SLR) to better understand how existing studies have classified and analyzed UHI variations. Research trends and limitations related to UHI variation were reviewed focusing on 55 studies extracted through a five-stage protocol to identify critical studies. The selected studies were analyzed and synthesized in detail. The results showed that studies use different research ranges, data collection methods, analysis, and prediction models depending on the type of UHI variation. These results also indicate that studies have not used universal and specific protocols that apply to UHI variations. To address the limitations of these studies, it is necessary to develop more specific UHI research design methods and an analytical model that reflects the three-dimensional elements of the collected data. In addition, researchers should develop indexes to explain the spatial and temporal variations of UHIs. Further studies can help establish policies and planning codes to counter the spatiotemporal variability of UHIs.

Suggested Citation

  • Kim, Se Woong & Brown, Robert D., 2021. "Urban heat island (UHI) variations within a city boundary: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
  • Handle: RePEc:eee:rensus:v:148:y:2021:i:c:s1364032121005438
    DOI: 10.1016/j.rser.2021.111256
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121005438
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111256?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Hyungkyoo & Jung, Yoonhee & Oh, Jae In, 2019. "Transformation of urban heat island in the three-center city of Seoul, South Korea: The role of master plans," Land Use Policy, Elsevier, vol. 86(C), pages 328-338.
    2. Hong Jin & Peng Cui & Nyuk Hien Wong & Marcel Ignatius, 2018. "Assessing the Effects of Urban Morphology Parameters on Microclimate in Singapore to Control the Urban Heat Island Effect," Sustainability, MDPI, vol. 10(1), pages 1-18, January.
    3. Cotana, Franco & Rossi, Federico & Filipponi, Mirko & Coccia, Valentina & Pisello, Anna Laura & Bonamente, Emanuele & Petrozzi, Alessandro & Cavalaglio, Gianluca, 2014. "Albedo control as an effective strategy to tackle Global Warming: A case study," Applied Energy, Elsevier, vol. 130(C), pages 641-647.
    4. Al-Sallal, Khaled A. & Al-Rais, Laila, 2011. "Outdoor airflow analysis and potential for passive cooling in the traditional urban context of Dubai," Renewable Energy, Elsevier, vol. 36(9), pages 2494-2501.
    5. Jamei, Elmira & Rajagopalan, Priyadarsini & Seyedmahmoudian, Mohammadmehdi & Jamei, Yashar, 2016. "Review on the impact of urban geometry and pedestrian level greening on outdoor thermal comfort," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1002-1017.
    6. Al-Sallal, Khaled A. & Al-Rais, Laila, 2012. "Outdoor airflow analysis and potential for passive cooling in the modern urban context of Dubai," Renewable Energy, Elsevier, vol. 38(1), pages 40-49.
    7. Taleb, Dana & Abu-Hijleh, Bassam, 2013. "Urban heat islands: Potential effect of organic and structured urban configurations on temperature variations in Dubai, UAE," Renewable Energy, Elsevier, vol. 50(C), pages 747-762.
    8. Klok, Lisette & Zwart, Sander & Verhagen, Henk & Mauri, Elena, 2012. "The surface heat island of Rotterdam and its relationship with urban surface characteristics," Resources, Conservation & Recycling, Elsevier, vol. 64(C), pages 23-29.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Igor Gallay & Branislav Olah & Veronika Murtinová & Zuzana Gallayová, 2023. "Quantification of the Cooling Effect and Cooling Distance of Urban Green Spaces Based on Their Vegetation Structure and Size as a Basis for Management Tools for Mitigating Urban Climate," Sustainability, MDPI, vol. 15(4), pages 1-22, February.
    2. Andreas Braun & Gebhard Warth & Felix Bachofer & Michael Schultz & Volker Hochschild, 2023. "Mapping Urban Structure Types Based on Remote Sensing Data—A Universal and Adaptable Framework for Spatial Analyses of Cities," Land, MDPI, vol. 12(10), pages 1-41, October.
    3. Ante Seletković & Martina Kičić & Mario Ančić & Jelena Kolić & Renata Pernar, 2023. "The Urban Heat Island Analysis for the City of Zagreb in the Period 2013–2022 Utilizing Landsat 8 Satellite Imagery," Sustainability, MDPI, vol. 15(5), pages 1-13, February.
    4. SangHyeok Lee & Donghyun Kim, 2022. "Multidisciplinary Understanding of the Urban Heating Problem and Mitigation: A Conceptual Framework for Urban Planning," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    5. Nasim Eslamirad & Abel Sepúlveda & Francesco De Luca & Kimmo Sakari Lylykangas & Sadok Ben Yahia, 2023. "Outdoor Thermal Comfort Optimization in a Cold Climate to Mitigate the Level of Urban Heat Island in an Urban Area," Energies, MDPI, vol. 16(12), pages 1-28, June.
    6. Ahmad Fallatah & Ayman Imam, 2023. "Detecting Land Surface Temperature Variations Using Earth Observation at the Holy Sites in Makkah, Saudi Arabia," Sustainability, MDPI, vol. 15(18), pages 1-18, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Toparlar, Y. & Blocken, B. & Maiheu, B. & van Heijst, G.J.F., 2017. "A review on the CFD analysis of urban microclimate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1613-1640.
    2. Costanzo, Vincenzo & Yao, Runming & Xu, Tiantian & Xiong, Jie & Zhang, Qiulei & Li, Baizhan, 2019. "Natural ventilation potential for residential buildings in a densely built-up and highly polluted environment. A case study," Renewable Energy, Elsevier, vol. 138(C), pages 340-353.
    3. Yasser Ibrahim & Tristan Kershaw & Paul Shepherd & David Coley, 2021. "On the Optimisation of Urban form Design, Energy Consumption and Outdoor Thermal Comfort Using a Parametric Workflow in a Hot Arid Zone," Energies, MDPI, vol. 14(13), pages 1-22, July.
    4. Kim, Se Woong & Brown, Robert D., 2023. "Development of a micro-scale heat island (MHI) model to assess the thermal environment in urban street canyons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    5. Emanuele Bonamente & Franco Cotana, 2015. "Carbon and Energy Footprints of Prefabricated Industrial Buildings: A Systematic Life Cycle Assessment Analysis," Energies, MDPI, vol. 8(11), pages 1-17, November.
    6. Bonggeun Song & Kyunghun Park, 2019. "Analysis of Spatiotemporal Urban Temperature Characteristics by Urban Spatial Patterns in Changwon City, South Korea," Sustainability, MDPI, vol. 11(14), pages 1-21, July.
    7. Taleghani, Mohammad, 2018. "Outdoor thermal comfort by different heat mitigation strategies- A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2011-2018.
    8. Silva, Marcos Dornelas Freitas Machado e & Calijuri, Maria Lúcia & Sales, Francisco José Ferreira de & Souza, Mauro Henrique Batalha de & Lopes, Lucas Sampaio, 2014. "Integration of technologies and alternative sources of water and energy to promote the sustainability of urban landscapes," Resources, Conservation & Recycling, Elsevier, vol. 91(C), pages 71-81.
    9. Renato Soares & Helena Corvacho & Fernando Alves, 2021. "Summer Thermal Conditions in Outdoor Public Spaces: A Case Study in a Mediterranean Climate," Sustainability, MDPI, vol. 13(10), pages 1-26, May.
    10. Liuying Wang & Gaoyuan Wang & Tian Chen & Junnan Liu, 2023. "The Regulating Effect of Urban Large Planar Water Bodies on Residential Heat Islands: A Case Study of Meijiang Lake in Tianjin," Land, MDPI, vol. 12(12), pages 1-22, December.
    11. SangHyeok Lee & Donghyun Kim, 2022. "Multidisciplinary Understanding of the Urban Heating Problem and Mitigation: A Conceptual Framework for Urban Planning," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    12. Jamei, E. & Ossen, D.R. & Seyedmahmoudian, M. & Sandanayake, M. & Stojcevski, A. & Horan, B., 2020. "Urban design parameters for heat mitigation in tropics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    13. Abbasabadi, Narjes & Ashayeri, Mehdi & Azari, Rahman & Stephens, Brent & Heidarinejad, Mohammad, 2019. "An integrated data-driven framework for urban energy use modeling (UEUM)," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    14. Emanuele Bonamente & Lara Pelliccia & Maria Cleofe Merico & Sara Rinaldi & Alessandro Petrozzi, 2015. "The Multifunctional Environmental Energy Tower: Carbon Footprint and Land Use Analysis of an Integrated Renewable Energy Plant," Sustainability, MDPI, vol. 7(10), pages 1-21, October.
    15. Néstor Santillán-Soto & O. Rafael García-Cueto & Alejandro A. Lambert-Arista & Sara Ojeda-Benítez & Samantha E. Cruz-Sotelo, 2019. "Comparative Analysis of Two Urban Microclimates: Energy Consumption and Greenhouse Gas Emissions," Sustainability, MDPI, vol. 11(7), pages 1-11, April.
    16. Maria Makropoulou, 2017. "Microclimate Improvement of Inner-City Urban Areas in a Mediterranean Coastal City," Sustainability, MDPI, vol. 9(6), pages 1-29, May.
    17. Meng Huang & Peng Cui & Xin He, 2018. "Study of the Cooling Effects of Urban Green Space in Harbin in Terms of Reducing the Heat Island Effect," Sustainability, MDPI, vol. 10(4), pages 1-17, April.
    18. Hui Chen & Yin Wei & Yaolin Lin & Wei Yang & Xiaoming Chen & Maria Kolokotroni & Xiaohong Liu & Guoqiang Zhang, 2020. "Investigation on the Thermal Condition of a Traditional Cold-Lane in Summer in Subtropical Humid Climate Region of China," Energies, MDPI, vol. 13(24), pages 1-21, December.
    19. Javanroodi, Kavan & Mahdavinejad, Mohammadjavad & Nik, Vahid M., 2018. "Impacts of urban morphology on reducing cooling load and increasing ventilation potential in hot-arid climate," Applied Energy, Elsevier, vol. 231(C), pages 714-746.
    20. Fahad Haneef & Giovanni Pernigotto & Andrea Gasparella & Jérôme Henri Kämpf, 2021. "Application of Urban Scale Energy Modelling and Multi-Objective Optimization Techniques for Building Energy Renovation at District Scale," Sustainability, MDPI, vol. 13(20), pages 1-26, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:148:y:2021:i:c:s1364032121005438. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.