IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v50y2013icp747-762.html
   My bibliography  Save this article

Urban heat islands: Potential effect of organic and structured urban configurations on temperature variations in Dubai, UAE

Author

Listed:
  • Taleb, Dana
  • Abu-Hijleh, Bassam

Abstract

Urban heat islands are phenomena that occur coupled with rapid urban developments. The study was carried out to show the effect of organic and structured urban configurations on temperature variations throughout the year, especially in summer. The study investigated a larger area of the city rather than merely building-to-building relationships. It went beyond the confinement of street and building geometries and investigated how a number of these geometries put together in one context contributed to temperature variations. Computer simulation software was used to simulate three different urban configurations, representing an organic configuration in the Bastakiyah model and two structured configurations represented in the Orthogonal and Volume Ortho configurations. The simulations were carried out in Dubai, UAE for summer, winter, and autumn with fixed initial input temperature value of 32 °C and varying initial wind speeds (0.1 m/s and 3.6 m/s; and 7 m/s for summer case only).

Suggested Citation

  • Taleb, Dana & Abu-Hijleh, Bassam, 2013. "Urban heat islands: Potential effect of organic and structured urban configurations on temperature variations in Dubai, UAE," Renewable Energy, Elsevier, vol. 50(C), pages 747-762.
  • Handle: RePEc:eee:renene:v:50:y:2013:i:c:p:747-762
    DOI: 10.1016/j.renene.2012.07.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148112004569
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.07.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bourbia, F. & Boucheriba, F., 2010. "Impact of street design on urban microclimate for semi arid climate (Constantine)," Renewable Energy, Elsevier, vol. 35(2), pages 343-347.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Se Woong & Brown, Robert D., 2021. "Urban heat island (UHI) variations within a city boundary: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    2. Maria Makropoulou, 2017. "Microclimate Improvement of Inner-City Urban Areas in a Mediterranean Coastal City," Sustainability, MDPI, vol. 9(6), pages 1-29, May.
    3. Eduardo Diz-Mellado & Samuele Rubino & Soledad Fernández-García & Macarena Gómez-Mármol & Carlos Rivera-Gómez & Carmen Galán-Marín, 2021. "Applied Machine Learning Algorithms for Courtyards Thermal Patterns Accurate Prediction," Mathematics, MDPI, vol. 9(10), pages 1-19, May.
    4. Deng, Ji-Yu & Wong, Nyuk Hien & Zheng, Xin, 2021. "Effects of street geometries on building cooling demand in Nanjing, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    5. Toparlar, Y. & Blocken, B. & Maiheu, B. & van Heijst, G.J.F., 2017. "A review on the CFD analysis of urban microclimate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1613-1640.
    6. Liu Tian & Yongcai Li & Jun Lu & Jue Wang, 2021. "Review on Urban Heat Island in China: Methods, Its Impact on Buildings Energy Demand and Mitigation Strategies," Sustainability, MDPI, vol. 13(2), pages 1-31, January.
    7. Mahmoud Abu Ali & Khaled Alawadi & Asim Khanal, 2021. "The Role of Green Infrastructure in Enhancing Microclimate Conditions: A Case Study of a Low-Rise Neighborhood in Abu Dhabi," Sustainability, MDPI, vol. 13(8), pages 1-24, April.
    8. Jozefína Pokrývková & Ľuboš Jurík & Lenka Lackóová & Klaudia Halászová & Richard Hanzlík & Mohammad Ebrahim Banihabib, 2021. "The Urban Environment Impact of Climate Change Study and Proposal of the City Micro-Environment Improvement," Sustainability, MDPI, vol. 13(8), pages 1-15, April.
    9. Moein Atri & Sahar Nedae-Tousi & Sina Shahab & Ebrahim Solgi, 2021. "The Effects of Thermal-Spatial Behaviours of Land Covers on Urban Heat Islands in Semi-Arid Climates," Sustainability, MDPI, vol. 13(24), pages 1-23, December.
    10. Lontorfos, V. & Efthymiou, C. & Santamouris, M., 2018. "On the time varying mitigation performance of reflective geoengineering technologies in cities," Renewable Energy, Elsevier, vol. 115(C), pages 926-930.
    11. Xiaoyi Xing & Li Dong & Cecil Konijnendijk & Peiyao Hao & Shuxin Fan & Wei Niu, 2021. "The Impact of Microclimate on the Reproductive Phenology of Female Populus tomentosa in a Micro-Scale Urban Green Space in Beijing," Sustainability, MDPI, vol. 13(6), pages 1-20, March.
    12. Dario Ambrosini & Giorgio Galli & Biagio Mancini & Iole Nardi & Stefano Sfarra, 2014. "Evaluating Mitigation Effects of Urban Heat Islands in a Historical Small Center with the ENVI-Met ® Climate Model," Sustainability, MDPI, vol. 6(10), pages 1-17, October.
    13. Jamei, Elmira & Rajagopalan, Priyadarsini & Seyedmahmoudian, Mohammadmehdi & Jamei, Yashar, 2016. "Review on the impact of urban geometry and pedestrian level greening on outdoor thermal comfort," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1002-1017.
    14. Xuan Ma & Hiroatsu Fukuda & Dian Zhou & Mengying Wang, 2019. "The Evaluation of Outdoor Thermal Sensation and Outdoor Energy Efficiency of a Commercial Pedestrianized Zone," Energies, MDPI, vol. 12(7), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yeri Choi & Sugie Lee & Hyunbin Moon, 2018. "Urban Physical Environments and the Duration of High Air Temperature: Focusing on Solar Radiation Trapping Effects," Sustainability, MDPI, vol. 10(12), pages 1-14, December.
    2. Randa Osama Shata & Ayman Hassaan Mahmoud & Mohammad Fahmy, 2021. "Correlating the Sky View Factor with the Pedestrian Thermal Environment in a Hot Arid University Campus Plaza," Sustainability, MDPI, vol. 13(2), pages 1-25, January.
    3. Zhiming GUO & Tsuyoshi SETOGUCHI & Norihiro WATANABE & Ke HUO, 2018. "Public Open Space Design Study on the Basis of Microclimate and Spatial Behavior in Hot and Cold Weather Conditions in Downtown Area," Modern Applied Science, Canadian Center of Science and Education, vol. 12(2), pages 128-128, February.
    4. Mohajeri, N. & Gudmundsson, A. & Kunckler, T. & Upadhyay, G. & Assouline, D. & Kämpf, J.H & Scartezzini, J.L., 2019. "A solar-based sustainable urban design: The effects of city-scale street-canyon geometry on solar access in Geneva, Switzerland," Applied Energy, Elsevier, vol. 240(C), pages 173-190.
    5. Nazanin Nasrollahi & Amir Ghosouri & Jamal Khodakarami & Mohammad Taleghani, 2020. "Heat-Mitigation Strategies to Improve Pedestrian Thermal Comfort in Urban Environments: A Review," Sustainability, MDPI, vol. 12(23), pages 1-23, November.
    6. Jamei, Elmira & Rajagopalan, Priyadarsini & Seyedmahmoudian, Mohammadmehdi & Jamei, Yashar, 2016. "Review on the impact of urban geometry and pedestrian level greening on outdoor thermal comfort," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1002-1017.
    7. Yasser Ibrahim & Tristan Kershaw & Paul Shepherd & David Coley, 2021. "On the Optimisation of Urban form Design, Energy Consumption and Outdoor Thermal Comfort Using a Parametric Workflow in a Hot Arid Zone," Energies, MDPI, vol. 14(13), pages 1-22, July.
    8. Choi, Yeri & Lee, Sugie, 2020. "The impact of urban physical environments on cooling rates in summer: Focusing on interaction effects with a kernel-based regularized least squares (KRLS) model," Renewable Energy, Elsevier, vol. 149(C), pages 523-534.
    9. Sukjin Jung & Seonghwan Yoon, 2021. "Analysis of the Effects of Floor Area Ratio Change in Urban Street Canyons on Microclimate and Particulate Matter," Energies, MDPI, vol. 14(3), pages 1-14, January.
    10. Xie, Xiaoxiong & Sahin, Ozge & Luo, Zhiwen & Yao, Runming, 2020. "Impact of neighbourhood-scale climate characteristics on building heating demand and night ventilation cooling potential," Renewable Energy, Elsevier, vol. 150(C), pages 943-956.
    11. Al-Sallal, Khaled A. & Al-Rais, Laila, 2012. "Outdoor airflow analysis and potential for passive cooling in the modern urban context of Dubai," Renewable Energy, Elsevier, vol. 38(1), pages 40-49.
    12. Sheikh Ahmad Zaki & Siti Wan Syahidah & Mohd Fairuz Shahidan & Mardiana Idayu Ahmad & Fitri Yakub & Mohamad Zaki Hassan & Mohd Yusof Md Daud, 2020. "Assessment of Outdoor Air Temperature with Different Shaded Area within an Urban University Campus in Hot-Humid Climate," Sustainability, MDPI, vol. 12(14), pages 1-24, July.
    13. Bumseok Chun & Subhrajit Guhathakurta, 2017. "Daytime and nighttime urban heat islands statistical models for Atlanta," Environment and Planning B, , vol. 44(2), pages 308-327, March.
    14. Jaehyun Ha & Yeri Choi & Sugie Lee & Kyushik Oh, 2020. "Diurnal and Seasonal Variations in the Effect of Urban Environmental Factors on Air Temperature: A Consecutive Regression Analysis Approach," IJERPH, MDPI, vol. 17(2), pages 1-21, January.
    15. Rosso, Federica & Golasi, Iacopo & Castaldo, Veronica Lucia & Piselli, Cristina & Pisello, Anna Laura & Salata, Ferdinando & Ferrero, Marco & Cotana, Franco & de Lieto Vollaro, Andrea, 2018. "On the impact of innovative materials on outdoor thermal comfort of pedestrians in historical urban canyons," Renewable Energy, Elsevier, vol. 118(C), pages 825-839.
    16. Keirstead, James & Jennings, Mark & Sivakumar, Aruna, 2012. "A review of urban energy system models: Approaches, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3847-3866.
    17. Zheng Zhu & Jing Liang & Cheng Sun & Yunsong Han, 2020. "Summer Outdoor Thermal Comfort in Urban Commercial Pedestrian Streets in Severe Cold Regions of China," Sustainability, MDPI, vol. 12(5), pages 1-19, March.
    18. Ayat Elkhazindar & Sahar N. Kharrufa & Mohammad S. Arar, 2022. "The Effect of Urban Form on the Heat Island Phenomenon and Human Thermal Comfort: A Comparative Study of UAE Residential Sites," Energies, MDPI, vol. 15(15), pages 1-31, July.
    19. Patryk Antoszewski & Michał Krzyżaniak & Dariusz Świerk, 2022. "The Future of Climate-Resilient and Climate-Neutral City in the Temperate Climate Zone," IJERPH, MDPI, vol. 19(7), pages 1-60, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:50:y:2013:i:c:p:747-762. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.