Author
Listed:
- Bohua Ling
(School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China)
- Jiani Huang
(School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China)
- Chengtao Luo
(School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China)
Abstract
Parks play a crucial role in mitigating urban heat island effects, a key challenge for urban sustainability. Park cooling intensity (PCI) mechanisms across varying canopy-layer urban heat island (CUHI) gradients remain underexplored, particularly regarding interactions with meteorological, topographical, and socio-economic factors. According to the urban-suburban air temperature difference, this study classified the city into non-, weak, and strong CUHI regions. We integrated causal inference, machine learning and a geographical detector (Geodetector) to model and interpret PCI dynamics across CUHI gradients. The results reveal that surrounding impervious surface coverage is a universal driver of PCI by enhancing thermal contrast at park boundaries. However, the dominant drivers of PCI varied significantly across CUHI gradients. In non-CUHI regions, surrounding imperviousness dominated PCI and exhibited bilaterally enhanced interaction with intra-park patch density. Weak CUHI regions relied on intra-park green coverage with nonlinear synergies between water body proportion and park area. Strong CUHI regions involved systemic urban fabric influences mediated by surrounding imperviousness, evidenced by a validated causal network. Crucially, causal inference reduces model complexity by decreasing predictor counts by 79%, 25% and 71% in non-, weak and strong CUHI regions, respectively, while maintaining comparable accuracy to full-factor models. This outcome demonstrates the efficacy of causal inference in eliminating collinear metrics and spurious correlations from traditional feature selection, ensuring retained predictors reside within causal pathways and support process-based interpretability. Our study highlights the need for context-adaptive cooling strategies and underscores the value of integrating causal–statistical approaches. This framework provides actionable insights for designing climate-resilient blue–green spaces, advancing urban sustainability goals. Future research should prioritize translating causal diagnostics into scalable strategies for sustainable urban planning.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:5800-:d:1685988. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.