IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i13p5800-d1685988.html
   My bibliography  Save this article

Gradient-Specific Park Cooling Mechanisms for Sustainable Urban Heat Mitigation: A Multi-Method Synthesis of Causal Inference, Machine Learning and Geographical Detector

Author

Listed:
  • Bohua Ling

    (School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China)

  • Jiani Huang

    (School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China)

  • Chengtao Luo

    (School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China)

Abstract

Parks play a crucial role in mitigating urban heat island effects, a key challenge for urban sustainability. Park cooling intensity (PCI) mechanisms across varying canopy-layer urban heat island (CUHI) gradients remain underexplored, particularly regarding interactions with meteorological, topographical, and socio-economic factors. According to the urban-suburban air temperature difference, this study classified the city into non-, weak, and strong CUHI regions. We integrated causal inference, machine learning and a geographical detector (Geodetector) to model and interpret PCI dynamics across CUHI gradients. The results reveal that surrounding impervious surface coverage is a universal driver of PCI by enhancing thermal contrast at park boundaries. However, the dominant drivers of PCI varied significantly across CUHI gradients. In non-CUHI regions, surrounding imperviousness dominated PCI and exhibited bilaterally enhanced interaction with intra-park patch density. Weak CUHI regions relied on intra-park green coverage with nonlinear synergies between water body proportion and park area. Strong CUHI regions involved systemic urban fabric influences mediated by surrounding imperviousness, evidenced by a validated causal network. Crucially, causal inference reduces model complexity by decreasing predictor counts by 79%, 25% and 71% in non-, weak and strong CUHI regions, respectively, while maintaining comparable accuracy to full-factor models. This outcome demonstrates the efficacy of causal inference in eliminating collinear metrics and spurious correlations from traditional feature selection, ensuring retained predictors reside within causal pathways and support process-based interpretability. Our study highlights the need for context-adaptive cooling strategies and underscores the value of integrating causal–statistical approaches. This framework provides actionable insights for designing climate-resilient blue–green spaces, advancing urban sustainability goals. Future research should prioritize translating causal diagnostics into scalable strategies for sustainable urban planning.

Suggested Citation

  • Bohua Ling & Jiani Huang & Chengtao Luo, 2025. "Gradient-Specific Park Cooling Mechanisms for Sustainable Urban Heat Mitigation: A Multi-Method Synthesis of Causal Inference, Machine Learning and Geographical Detector," Sustainability, MDPI, vol. 17(13), pages 1-21, June.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:5800-:d:1685988
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/13/5800/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/13/5800/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kim, Se Woong & Brown, Robert D., 2021. "Urban heat island (UHI) variations within a city boundary: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    2. Huawei Li & Guifang Wang & Guohang Tian & Sándor Jombach, 2020. "Mapping and Analyzing the Park Cooling Effect on Urban Heat Island in an Expanding City: A Case Study in Zhengzhou City, China," Land, MDPI, vol. 9(2), pages 1-17, February.
    3. Meizi You & Riwen Lai & Jiayuan Lin & Zhesheng Zhu, 2021. "Quantitative Analysis of a Spatial Distribution and Driving Factors of the Urban Heat Island Effect: A Case Study of Fuzhou Central Area, China," IJERPH, MDPI, vol. 18(24), pages 1-19, December.
    4. Huihui Wang & Yunsong Yang & Suru Liu & Hanyu Xue & Tingting Xu & Wanlin He & Xiaoyong Gao & Ruifeng Jiang, 2024. "Unveiling the Coupling Coordination and Interaction Mechanism between the Local Heat Island Effect and Urban Resilience in China," Sustainability, MDPI, vol. 16(6), pages 1-28, March.
    5. Aibo Jin & Yunyu Ge & Shiyang Zhang, 2024. "Spatial Characteristics of Multidimensional Urban Vitality and Its Impact Mechanisms by the Built Environment," Land, MDPI, vol. 13(7), pages 1-22, July.
    6. Maomao Zhang & Abdulla-Al Kafy & Bing Ren & Yanwei Zhang & Shukui Tan & Jianxing Li, 2022. "Application of the Optimal Parameter Geographic Detector Model in the Identification of Influencing Factors of Ecological Quality in Guangzhou, China," Land, MDPI, vol. 11(8), pages 1-20, August.
    7. Tian Wang & Hui Tu & Bo Min & Zuzheng Li & Xiaofang Li & Qingxiang You, 2022. "The Mitigation Effect of Park Landscape on Thermal Environment in Shanghai City Based on Remote Sensing Retrieval Method," IJERPH, MDPI, vol. 19(5), pages 1-24, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhaoxue Gai & Ying Xu & Guoming Du, 2023. "Spatio-Temporal Differentiation and Driving Factors of Carbon Storage in Cultivated Land-Use Transition," Sustainability, MDPI, vol. 15(5), pages 1-16, February.
    2. You, Meizi & Guan, ChengHe, 2024. "Does self-containment of spatial scale and land use function contribute to mitigate urban heat island effects? Lessons from new towns in Shanghai," Land Use Policy, Elsevier, vol. 146(C).
    3. Cong Li & Yajuan Zhou & Manfei Wu & Jiayue Xu & Xin Fu, 2025. "Exploring Nonlinear Threshold Effects and Interactions Between Built Environment and Urban Vitality at the Block Level Using Machine Learning," Land, MDPI, vol. 14(6), pages 1-25, June.
    4. SangHyeok Lee & Donghyun Kim, 2022. "Multidisciplinary Understanding of the Urban Heating Problem and Mitigation: A Conceptual Framework for Urban Planning," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    5. Wen Chen & Jinjie Wang & Jianli Ding & Xiangyu Ge & Lijing Han & Shaofeng Qin, 2023. "Detecting Long-Term Series Eco-Environmental Quality Changes and Driving Factors Using the Remote Sensing Ecological Index with Salinity Adaptability (RSEI SI ): A Case Study in the Tarim River Basin,," Land, MDPI, vol. 12(7), pages 1-23, June.
    6. Richard Smardon, 2020. "6th Fábos Conference on Landscape and Greenway Planning," Land, MDPI, vol. 9(11), pages 1-2, November.
    7. Ante Seletković & Martina Kičić & Mario Ančić & Jelena Kolić & Renata Pernar, 2023. "The Urban Heat Island Analysis for the City of Zagreb in the Period 2013–2022 Utilizing Landsat 8 Satellite Imagery," Sustainability, MDPI, vol. 15(5), pages 1-13, February.
    8. Zhongyun Ni & Yinbing Zhao & Jingjing Liu & Yongjun Li & Xiaojiang Xia & Yang Zhang, 2024. "Navigating Ecological–Economic Interactions: Spatiotemporal Dynamics and Drivers in the Lower Reaches of the Jinsha River," Land, MDPI, vol. 13(12), pages 1-59, December.
    9. Taher Safarrad & Mostafa Ghadami & Andreas Dittmann & Mousa Pazhuhan (Panahandeh Khah), 2021. "Tourism Effect on the Spatiotemporal Pattern of Land Surface Temperature (LST): Babolsar and Fereydonkenar Cities (Cases Study in Iran)," Land, MDPI, vol. 10(9), pages 1-25, September.
    10. Yunlin He & Yanhua Mo & Jiangming Ma, 2022. "Spatio-Temporal Evolution and Influence Mechanism of Habitat Quality in Guilin City, China," IJERPH, MDPI, vol. 20(1), pages 1-15, December.
    11. Jinlong Zhang & Yuan Qi & Rui Yang & Xiaofang Ma & Juan Zhang & Wanqiang Qi & Qianhong Guo & Hongwei Wang, 2023. "Impacts of Climate Change and Land Use/Cover Change on the Net Primary Productivity of Vegetation in the Qinghai Lake Basin," IJERPH, MDPI, vol. 20(3), pages 1-16, January.
    12. Igor Gallay & Branislav Olah & Veronika Murtinová & Zuzana Gallayová, 2023. "Quantification of the Cooling Effect and Cooling Distance of Urban Green Spaces Based on Their Vegetation Structure and Size as a Basis for Management Tools for Mitigating Urban Climate," Sustainability, MDPI, vol. 15(4), pages 1-22, February.
    13. Tian, Xiaoyu & Liu, Lin & Wang, Yilin & Liu, Jing & Zhao, Zhiwei & Feng, Xin, 2025. "Quantifying the influence of wetland park cooling on adjacent building energy consumption based on local climate zone scheme," Energy, Elsevier, vol. 323(C).
    14. Hongjia Zhu & Ao Wang & Pengtao Wang & Chunguang Hu & Maomao Zhang, 2025. "Spatiotemporal Dynamics and Response of Land Surface Temperature and Kernel Normalized Difference Vegetation Index in Yangtze River Economic Belt, China: Multi-Method Analysis," Land, MDPI, vol. 14(3), pages 1-20, March.
    15. Sudeshna Haldar & Priyanka Dey, 2024. "Towards UHI mitigation adopting park cooling effect: Two- decade literature review for a theoretical framework," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 29(8), pages 1-25, December.
    16. Rafał Misa & Anton Sroka & Dawid Mrocheń, 2025. "Evaluating Surface Stability for Sustainable Development Following Cessation of Mining Exploitation," Sustainability, MDPI, vol. 17(3), pages 1-20, January.
    17. Mengba Liu & Yanfei Xiong & Anlu Zhang, 2024. "Can China’s Cross-Regional Ecological Fiscal Transfers Help Improve the Ecological Environment?—Evidence from Hubei Province," Land, MDPI, vol. 13(8), pages 1-23, July.
    18. Taher Safarrad & Mostafa Ghadami & Andreas Dittmann, 2022. "Effects of COVID-19 Restriction Policies on Urban Heat Islands in Some European Cities: Berlin, London, Paris, Madrid, and Frankfurt," IJERPH, MDPI, vol. 19(11), pages 1-25, May.
    19. Weiwei Zhang & Wanqian Zhang & Jianwan Ji & Chao Chen, 2024. "Urban Ecological Quality Assessment Based on Google Earth Engine and Driving Factors Analysis: A Case Study of Wuhan City, China," Sustainability, MDPI, vol. 16(9), pages 1-23, April.
    20. David B. Olawade & Melissa McLaughlin & Yinka Julianah Adeniji & Gabriel Osasumwen Egbon & Arghavan Rahimi & Stergios Boussios, 2025. "Urban Microclimates and Their Relationship with Social Isolation: A Review," IJERPH, MDPI, vol. 22(6), pages 1-32, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:5800-:d:1685988. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.