IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i12p2126-d1292198.html
   My bibliography  Save this article

The Regulating Effect of Urban Large Planar Water Bodies on Residential Heat Islands: A Case Study of Meijiang Lake in Tianjin

Author

Listed:
  • Liuying Wang

    (School of Architecture, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China)

  • Gaoyuan Wang

    (School of Architecture, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China)

  • Tian Chen

    (School of Architecture, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China)

  • Junnan Liu

    (School of Architecture, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China)

Abstract

Efficiently harnessing the urban cool island effect associated with large urban aquatic bodies holds significant importance in mitigating the urban heat island (UHI) effect and enhancing the quality of residential living. This study focuses on Tianjin’s Meijiang Lake and its surrounding 47 residential areas, combining Landsat 8 remote sensing satellite data with geographic information system (GIS) buffer analyses and multiple linear regression analyses to reveal the summer thermal characteristics of residential waterfront areas with diverse spatial layouts. The results indicate that: (1) Meijiang Lake’s effective cooling radius extends up to 130 m from the water’s edge, achieving a maximum temperature reduction of 14.44%. Beyond 810 m, the cooling effect diminishes significantly. (2) Waterfront distance ( WD ), building density ( BD ), building width ( L ) and normalized difference vegetation index ( NDVI ) emerge as the primary factors influencing changes in average land surface temperature (Δ LST ) in residential areas. The degrees of influence are ordered as follows: BD > WD > NDVI > L . “Dispersed” pattern residential areas exhibit the most favorable thermal environments, which are primarily influenced by WD , while “parallel” pattern residential areas demonstrate the least favorable conditions, primarily due to WD and NDVI . (3) The direct adjacency of residential areas to large-scale aquatic bodies proves to be the most effective approach for temperature reduction, resulting in a 5.03% lower average temperature compared to non-adjacent areas. Consequently, this study derives strategies for improving the thermal environment via the regulation of spatial planning elements in residential areas, including waterfront patterns, vegetation coverage, WD , and BD .

Suggested Citation

  • Liuying Wang & Gaoyuan Wang & Tian Chen & Junnan Liu, 2023. "The Regulating Effect of Urban Large Planar Water Bodies on Residential Heat Islands: A Case Study of Meijiang Lake in Tianjin," Land, MDPI, vol. 12(12), pages 1-22, December.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:12:p:2126-:d:1292198
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/12/2126/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/12/2126/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jamei, Elmira & Rajagopalan, Priyadarsini & Seyedmahmoudian, Mohammadmehdi & Jamei, Yashar, 2016. "Review on the impact of urban geometry and pedestrian level greening on outdoor thermal comfort," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1002-1017.
    2. Zheming Liu & Yumeng Jin & Hong Jin, 2019. "The Effects of Different Space Forms in Residential Areas on Outdoor Thermal Comfort in Severe Cold Regions of China," IJERPH, MDPI, vol. 16(20), pages 1-20, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bonggeun Song & Kyunghun Park, 2019. "Analysis of Spatiotemporal Urban Temperature Characteristics by Urban Spatial Patterns in Changwon City, South Korea," Sustainability, MDPI, vol. 11(14), pages 1-21, July.
    2. Taleghani, Mohammad, 2018. "Outdoor thermal comfort by different heat mitigation strategies- A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2011-2018.
    3. Renato Soares & Helena Corvacho & Fernando Alves, 2021. "Summer Thermal Conditions in Outdoor Public Spaces: A Case Study in a Mediterranean Climate," Sustainability, MDPI, vol. 13(10), pages 1-26, May.
    4. Jamei, E. & Ossen, D.R. & Seyedmahmoudian, M. & Sandanayake, M. & Stojcevski, A. & Horan, B., 2020. "Urban design parameters for heat mitigation in tropics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    5. Yingtao Qi & Xiaodi Li & Yupeng Wang & Dian Zhou, 2023. "Research on Indoor Thermal Environment Analysis and Optimization Strategy of Rural Dwellings around Xi’an Based on PET Evaluation," Sustainability, MDPI, vol. 15(10), pages 1-25, May.
    6. Hui Chen & Yin Wei & Yaolin Lin & Wei Yang & Xiaoming Chen & Maria Kolokotroni & Xiaohong Liu & Guoqiang Zhang, 2020. "Investigation on the Thermal Condition of a Traditional Cold-Lane in Summer in Subtropical Humid Climate Region of China," Energies, MDPI, vol. 13(24), pages 1-21, December.
    7. Komi Bernard Bedra & Bohong Zheng & Jiayu Li & Xi Luo, 2023. "A Parametric-Simulation Method to Study the Interconnections between Urban-Street-Morphology Indicators and Their Effects on Pedestrian Thermal Comfort in Tropical Summer," Sustainability, MDPI, vol. 15(11), pages 1-23, May.
    8. Shi Yin & Werner Lang & Yiqiang Xiao & Zhao Xu, 2019. "Correlative Impact of Shading Strategies and Configurations Design on Pedestrian-Level Thermal Comfort in Traditional Shophouse Neighbourhoods, Southern China," Sustainability, MDPI, vol. 11(5), pages 1-26, March.
    9. Tianyu Xi & Huan Qin & Weiqing Xu & Tong Yang & Chenxin Hu & Caiyi Zhao & Haoshun Wang, 2023. "Constantly Tracking and Investigating People’s Physical, Psychological, and Thermal Responses in Relation to Park Strolling in a Severe Cold Region of China—A Case Study of Stalin Waterfront Park," Sustainability, MDPI, vol. 15(9), pages 1-28, April.
    10. Jie-Sheng Lin & Faye Ya-Fen Chan & Jason Leung & Blanche Yu & Zhi-Hui Lu & Jean Woo & Timothy Kwok & Kevin Ka-Lun Lau, 2020. "Longitudinal Association of Built Environment Pattern with Physical Activity in a Community-Based Cohort of Elderly Hong Kong Chinese: A Latent Profile Analysis," IJERPH, MDPI, vol. 17(12), pages 1-15, June.
    11. Kleerekoper, Laura & Taleghani, Mohammad & van den Dobbelsteen, Andy & Hordijk, Truus, 2017. "Urban measures for hot weather conditions in a temperate climate condition: A review study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 515-533.
    12. Ying Zhang & Xijun Hu & Zheng Liu & Chunling Zhou & Hong Liang, 2022. "A Greening Strategy of Mitigation of the Thermal Environment for Coastal Sloping Urban Space," Sustainability, MDPI, vol. 15(1), pages 1-22, December.
    13. Milena Vuckovic & Kristina Kiesel & Ardeshir Mahdavi, 2017. "The Extent and Implications of the Microclimatic Conditions in the Urban Environment: A Vienna Case Study," Sustainability, MDPI, vol. 9(2), pages 1-16, January.
    14. Pourya Torkfar & Alessio Russo, 2023. "Assessing the Benefits of Climate-Sensitive Design with Nature-Based Solutions for Climate Change Adaptation in Urban Regeneration: A Case Study in Cheltenham, UK," Sustainability, MDPI, vol. 15(22), pages 1-22, November.
    15. Ziyi Wang & Zengqiao Chen & Cuiping Ma & Ronald Wennersten & Qie Sun, 2022. "Nationwide Evaluation of Urban Energy System Resilience in China Using a Comprehensive Index Method," Sustainability, MDPI, vol. 14(4), pages 1-36, February.
    16. Yunfang Jiang & Luyao Hou & Tiemao Shi & Qinchang Gui, 2017. "A Review of Urban Planning Research for Climate Change," Sustainability, MDPI, vol. 9(12), pages 1-21, December.
    17. Ying Zhang & Xijun Hu & Xilun Cao & Zheng Liu, 2022. "Numerical Simulation of the Thermal Environment during Summer in Coastal Open Space and Research on Evaluating the Cooling Effect: A Case Study of May Fourth Square, Qingdao," Sustainability, MDPI, vol. 14(22), pages 1-18, November.
    18. Juan Diego Blanco Cadena & Graziano Salvalai & Michele Lucesoli & Enrico Quagliarini & Marco D’Orazio, 2021. "Flexible Workflow for Determining Critical Hazard and Exposure Scenarios for Assessing SLODs Risk in Urban Built Environments," Sustainability, MDPI, vol. 13(8), pages 1-20, April.
    19. Adilkhanova, Indira & Ngarambe, Jack & Yun, Geun Young, 2022. "Recent advances in black box and white-box models for urban heat island prediction: Implications of fusing the two methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    20. Xuan Ma & Hiroatsu Fukuda & Dian Zhou & Mengying Wang, 2019. "A Study of the Pedestrianized Zone for Tourists: Urban Design Effects on Humans’ Thermal Comfort in Fo Shan City, Southern China," Sustainability, MDPI, vol. 11(10), pages 1-20, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:12:p:2126-:d:1292198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.