IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v79y2022ics0301420722005190.html
   My bibliography  Save this article

Inclusive infrastructure development, green innovation, and sustainable resource management: Evidence from China’s trade-adjusted material footprints

Author

Listed:
  • Razzaq, Asif
  • Sharif, Arshian
  • Ozturk, Ilhan
  • Skare, Marinko

Abstract

Depleting scarce resources and environmental deterioration are critical issues to address in the contemporary world. Particularly, China has shown exponential growth in infrastructure construction, international trade, and embodied innovation in the last few years. Aggressive infrastructure-led growth and urbanization have created unremitting pressure on China’s resource consumption. Therefore, this study analyzes the asymmetric impact of resource depletion associated with Chinese infrastructure development and urbanization by controlling the effects of green innovation and economic growth from 1990 to 2018. Consumption-based material footprint (MF) is used to quantify resource consumption from domestic activity. This study employ novel Quantile ARDL approach to integrating aromaticity arising from structural changes, policy shifts, financial or economic shocks, and data abnormality confirmed through preliminary tests. The long-run results show that infrastructure development, urbanization, and economic growth significantly contribute to MF. However, these effects substantially varied across lower, medium, and higher quantiles. The positive impact of infrastructure development is highest for higher quantiles of MF, while the impact of urbanization is highest at lower quantiles. Green innovation significantly decreases the MF, mainly at higher quantiles. Besides, the study validates Environmental Kuznets Curve hypothesis in the long run. Similar results are observed in the shorter run; however, their significance and magnitude are substantially lower due to the long-term transmission of model variables. These results offer valuable policy recommendations.

Suggested Citation

  • Razzaq, Asif & Sharif, Arshian & Ozturk, Ilhan & Skare, Marinko, 2022. "Inclusive infrastructure development, green innovation, and sustainable resource management: Evidence from China’s trade-adjusted material footprints," Resources Policy, Elsevier, vol. 79(C).
  • Handle: RePEc:eee:jrpoli:v:79:y:2022:i:c:s0301420722005190
    DOI: 10.1016/j.resourpol.2022.103076
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420722005190
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2022.103076?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cho, Jin Seo & Kim, Tae-hwan & Shin, Yongcheol, 2015. "Quantile cointegration in the autoregressive distributed-lag modeling framework," Journal of Econometrics, Elsevier, vol. 188(1), pages 281-300.
    2. Ma, Qiang & Murshed, Muntasir & Khan, Zeeshan, 2021. "The nexuses between energy investments, technological innovations, emission taxes, and carbon emissions in China," Energy Policy, Elsevier, vol. 155(C).
    3. Andrea Schreiber & Josefine Marx & Petra Zapp & Jürgen-Friedrich Hake & Daniel Voßenkaul & Bernd Friedrich, 2016. "Environmental Impacts of Rare Earth Mining and Separation Based on Eudialyte: A New European Way," Resources, MDPI, vol. 5(4), pages 1-22, October.
    4. Xiangfeng Ji & Muhammad Umar & Shahid Ali & Wajid Ali & Kai Tang & Zeeshan Khan, 2021. "Does fiscal decentralization and eco‐innovation promote sustainable environment? A case study of selected fiscally decentralized countries," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(1), pages 79-88, January.
    5. Razzaq, Asif & Sharif, Arshian & An, Hui & Aloui, Chaker, 2022. "Testing the directional predictability between carbon trading and sectoral stocks in China: New insights using cross-quantilogram and rolling window causality approaches," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    6. Martínez-Zarzoso, Inmaculada & Maruotti, Antonello, 2011. "The impact of urbanization on CO2 emissions: Evidence from developing countries," Ecological Economics, Elsevier, vol. 70(7), pages 1344-1353, May.
    7. Festus Victor Bekun, 2022. "Mitigating Emissions in India: Accounting for the Role of Real Income, Renewable Energy Consumption and Investment in Energy," International Journal of Energy Economics and Policy, Econjournals, vol. 12(1), pages 188-192.
    8. Heming Wang & Qiang Yue & Zhongwu Lu & Helmut Schuetz & Stefan Bringezu, 2013. "Total Material Requirement of Growing China: 1995–2008," Resources, MDPI, vol. 2(3), pages 1-16, August.
    9. Auci, Sabrina & Vignani, Donatella, 2013. "Environmental Kuznets curve and domestic material consumption indicator: an European analysis," MPRA Paper 52882, University Library of Munich, Germany.
    10. Yu, Yantuan & Zhang, Ning & Kim, Jong Dae, 2020. "Impact of urbanization on energy demand: An empirical study of the Yangtze River Economic Belt in China," Energy Policy, Elsevier, vol. 139(C).
    11. Mishra, Shekhar & Sharif, Arshian & Khuntia, Sashikanta & Meo, Muhammad Saeed & Rehman Khan, Syed Abdul, 2019. "Does oil prices impede Islamic stock indices? Fresh insights from wavelet-based quantile-on-quantile approach," Resources Policy, Elsevier, vol. 62(C), pages 292-304.
    12. Xiao, Zhijie, 2009. "Quantile cointegrating regression," Journal of Econometrics, Elsevier, vol. 150(2), pages 248-260, June.
    13. Franco, Sainu & Mandla, Venkata Ravibabu & Ram Mohan Rao, K., 2017. "Urbanization, energy consumption and emissions in the Indian context A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 898-907.
    14. Huijie Yan, 2015. "Provincial energy intensity in China: The role of urbanization," Post-Print hal-01457329, HAL.
    15. Brian R. Copeland & M. Scott Taylor, 2004. "Trade, Growth, and the Environment," Journal of Economic Literature, American Economic Association, vol. 42(1), pages 7-71, March.
    16. Sun, Yunpeng & Ajaz, Tahseen & Razzaq, Asif, 2022. "How infrastructure development and technical efficiency change caused resources consumption in BRICS countries: Analysis based on energy, transport, ICT, and financial infrastructure indices," Resources Policy, Elsevier, vol. 79(C).
    17. Heming Wang & Yao Wang & Cong Fan & Xinzhe Wang & Yao Wei & Zhihe Zhang & Jiashi Wang & Fengmei Ma & Qiang Yue, 2020. "Material Consumption and Carbon Emissions Associated with the Infrastructure Construction of 34 Cities in Northeast China," Complexity, Hindawi, vol. 2020, pages 1-20, October.
    18. Shahbaz, Muhammad & Raghutla, Chandrashekar & Song, Malin & Zameer, Hashim & Jiao, Zhilun, 2020. "Public-private partnerships investment in energy as new determinant of CO2 emissions: The role of technological innovations in China," Energy Economics, Elsevier, vol. 86(C).
    19. Lutter, Stephan & Giljum, Stefan & Bruckner, Martin, 2016. "A review and comparative assessment of existing approaches to calculate material footprints," Ecological Economics, Elsevier, vol. 127(C), pages 1-10.
    20. Bilgili, Faik & Koçak, Emrah & Bulut, Ümit, 2016. "The dynamic impact of renewable energy consumption on CO2 emissions: A revisited Environmental Kuznets Curve approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 838-845.
    21. Julian Donaubauer & Birgit E. Meyer & Peter Nunnenkamp, 2016. "A New Global Index of Infrastructure: Construction, Rankings and Applications," The World Economy, Wiley Blackwell, vol. 39(2), pages 236-259, February.
    22. Chikaraishi, Makoto & Fujiwara, Akimasa & Kaneko, Shinji & Poumanyvong, Phetkeo & Komatsu, Satoru & Kalugin, Andrey, 2015. "The moderating effects of urbanization on carbon dioxide emissions: A latent class modeling approach," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 302-317.
    23. Zhang, Yue-Jun & Peng, Yu-Lu & Ma, Chao-Qun & Shen, Bo, 2017. "Can environmental innovation facilitate carbon emissions reduction? Evidence from China," Energy Policy, Elsevier, vol. 100(C), pages 18-28.
    24. Wu, Bao & Jin, Chenfei & Monfort, Abel & Hua, Danni, 2021. "Generous charity to preserve green image? Exploring linkage between strategic donations and environmental misconduct," Journal of Business Research, Elsevier, vol. 131(C), pages 839-850.
    25. Yan, Huijie, 2015. "Provincial energy intensity in China: The role of urbanization," Energy Policy, Elsevier, vol. 86(C), pages 635-650.
    26. Paolo Agnolucci & Florian Flachenecker & Magnus Söderberg, 2017. "The causal impact of economic growth on material use in Europe," Journal of Environmental Economics and Policy, Taylor & Francis Journals, vol. 6(4), pages 415-432, October.
    27. Zheming Yan & Lan Yi & Kerui Du & Zhiming Yang, 2017. "Impacts of Low-Carbon Innovation and Its Heterogeneous Components on CO 2 Emissions," Sustainability, MDPI, vol. 9(4), pages 1-14, April.
    28. Jing Wu & Yongheng Deng & Jun Huang & Randall Morck & Bernard Yeung, 2013. "Incentives and Outcomes: China's Environmental Policy," NBER Working Papers 18754, National Bureau of Economic Research, Inc.
    29. Jing Guo & Tomer Fishman & Yao Wang & Alessio Miatto & Wendy Wuyts & Licheng Zheng & Heming Wang & Hiroki Tanikawa, 2021. "Urban development and sustainability challenges chronicled by a century of construction material flows and stocks in Tiexi, China," Journal of Industrial Ecology, Yale University, vol. 25(1), pages 162-175, February.
    30. Irfan, Muhammad & Razzaq, Asif & Sharif, Arshian & Yang, Xiaodong, 2022. "Influence mechanism between green finance and green innovation: Exploring regional policy intervention effects in China," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    31. Xiaoyang Zhong & Mingming Hu & Sebastiaan Deetman & Bernhard Steubing & Hai Xiang Lin & Glenn Aguilar Hernandez & Carina Harpprecht & Chunbo Zhang & Arnold Tukker & Paul Behrens, 2021. "Global greenhouse gas emissions from residential and commercial building materials and mitigation strategies to 2060," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    32. Sun, Yu & Cui, Yin, 2018. "Evaluating the coordinated development of economic, social and environmental benefits of urban public transportation infrastructure: Case study of four Chinese autonomous municipalities," Transport Policy, Elsevier, vol. 66(C), pages 116-126.
    33. Behrens, Arno & Giljum, Stefan & Kovanda, Jan & Niza, Samuel, 2007. "The material basis of the global economy: Worldwide patterns of natural resource extraction and their implications for sustainable resource use policies," Ecological Economics, Elsevier, vol. 64(2), pages 444-453, December.
    34. Costantini, Valeria & Crespi, Francesco & Palma, Alessandro, 2017. "Characterizing the policy mix and its impact on eco-innovation: A patent analysis of energy-efficient technologies," Research Policy, Elsevier, vol. 46(4), pages 799-819.
    35. Jaunky, Vishal Chandr, 2012. "Is there a material Kuznets curve for aluminium? evidence from rich countries," Resources Policy, Elsevier, vol. 37(3), pages 296-307.
    36. Gholamreza Zandi & Muhammad Haseeb, 2019. "The Importance of Green Energy Consumption and Agriculture in Reducing Environmental Degradation: Evidence From Sub-Saharan African Countries," International Journal of Financial Research, International Journal of Financial Research, Sciedu Press, vol. 11(5), pages 215-227, August.
    37. Dinda, Soumyananda, 2004. "Environmental Kuznets Curve Hypothesis: A Survey," Ecological Economics, Elsevier, vol. 49(4), pages 431-455, August.
    38. Lu, Qinli & Yang, Hong & Huang, Xianjin & Chuai, Xiaowei & Wu, Changyan, 2015. "Multi-sectoral decomposition in decoupling industrial growth from carbon emissions in the developed Jiangsu Province, China," Energy, Elsevier, vol. 82(C), pages 414-425.
    39. Dou, Yue & Zhao, Jun & Dong, Xiucheng & Dong, Kangyin, 2021. "Quantifying the impacts of energy inequality on carbon emissions in China: A household-level analysis," Energy Economics, Elsevier, vol. 102(C).
    40. Hira Arain & Liyan Han & Arshian Sharif & Muhammad Saeed Meo, 2020. "Investigating the effect of inbound tourism on FDI: The importance of quantile estimations," Tourism Economics, , vol. 26(4), pages 682-703, June.
    41. Razzaq, Asif & Ajaz, Tahseen & Li, Jing Claire & Irfan, Muhammad & Suksatan, Wanich, 2021. "Investigating the asymmetric linkages between infrastructure development, green innovation, and consumption-based material footprint: Novel empirical estimations from highly resource-consuming economi," Resources Policy, Elsevier, vol. 74(C).
    42. Tahseen Ajaz & Muhammad Tariq Majeed, 2018. "Changing Climate Patterns and Women Health: An Empirical Analysis of District Rawalpindi Pakistan," Global Social Sciences Review, Humanity Only, vol. 3(4), pages 320-342, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Razzaq, Asif & Ajaz, Tahseen & Li, Jing Claire & Irfan, Muhammad & Suksatan, Wanich, 2021. "Investigating the asymmetric linkages between infrastructure development, green innovation, and consumption-based material footprint: Novel empirical estimations from highly resource-consuming economi," Resources Policy, Elsevier, vol. 74(C).
    2. Zheng, Lei & Hao, Jia & Ban, Nannan, 2023. "Do recycling and regulations influence trade-adjusted resource consumption? Exploring the role of renewable energy," Resources Policy, Elsevier, vol. 81(C).
    3. Sun, Yunpeng & Ajaz, Tahseen & Razzaq, Asif, 2022. "How infrastructure development and technical efficiency change caused resources consumption in BRICS countries: Analysis based on energy, transport, ICT, and financial infrastructure indices," Resources Policy, Elsevier, vol. 79(C).
    4. Razzaq, Asif & Sharif, Arshian & Afshan, Sahar & Li, Claire J., 2023. "Do climate technologies and recycling asymmetrically mitigate consumption-based carbon emissions in the United States? New insights from Quantile ARDL," Technological Forecasting and Social Change, Elsevier, vol. 186(PA).
    5. Ulucak, Recep & Koçak, Emrah & Erdoğan, Seyfettin & Kassouri, Yacouba, 2020. "Investigating the non-linear effects of globalization on material consumption in the EU countries: Evidence from PSTR estimation," Resources Policy, Elsevier, vol. 67(C).
    6. Xin, Yongrong & Ajaz, Tahseen & Shahzad, Mohsin & Luo, Jia, 2023. "How productive capacities influence trade-adjusted resources consumption in China: Testing resource-based EKC," Resources Policy, Elsevier, vol. 81(C).
    7. Cheng Jin & Asif Razzaq & Faiza Saleem & Avik Sinha, 2022. "Asymmetric effects of eco-innovation and human capital development in realizing environmental sustainability in China: evidence from quantile ARDL framework," Economic Research-Ekonomska Istraživanja, Taylor & Francis Journals, vol. 35(1), pages 4947-4970, December.
    8. abid, Nabila & Ceci, Federica & Razzaq, Asif, 2023. "Inclusivity of information and communication technology in ecological governance for sustainable resources management in G10 countries," Resources Policy, Elsevier, vol. 81(C).
    9. Chien, Fengsheng & Ajaz, Tahseen & Andlib, Zubaria & Chau, Ka Yin & Ahmad, Paiman & Sharif, Arshian, 2021. "The role of technology innovation, renewable energy and globalization in reducing environmental degradation in Pakistan: A step towards sustainable environment," Renewable Energy, Elsevier, vol. 177(C), pages 308-317.
    10. Yang Ding & Qing Yang & Lanjuan Cao, 2021. "Examining the Impacts of Economic, Social, and Environmental Factors on the Relationship between Urbanization and CO 2 Emissions," Energies, MDPI, vol. 14(21), pages 1-23, November.
    11. Sharif, Arshian & Baris-Tuzemen, Ozge & Uzuner, Gizem & Ozturk, Ilhan & Sinha, Avik, 2020. "Revisiting the role of renewable and non-renewable energy consumption on Turkey’s ecological footprint: Evidence from Quantile ARDL approach," MPRA Paper 100044, University Library of Munich, Germany.
    12. Gangopadhyay, Partha & Das, Narasingha & Alam, G.M. Monirul & Khan, Uzma & Haseeb, Mohammad & Hossain, Md. Emran, 2023. "Revisiting the carbon pollution-inhibiting policies in the USA using the quantile ARDL methodology: What roles can clean energy and globalization play?," Renewable Energy, Elsevier, vol. 204(C), pages 710-721.
    13. Yan, Han, 2024. "How do mineral resources and financial expenditure influence sustainable environment? Exploring the role of social globalization and trade policy uncertainty in China," Resources Policy, Elsevier, vol. 90(C).
    14. Yu, Siming & Wan, Kang & Cai, Cheng & Xu, Lingli & Zhao, Tuanjie, 2023. "Resource curse and green growth in China: Role of energy transitions under COP26 declarations," Resources Policy, Elsevier, vol. 85(PA).
    15. Yingchao, He & Xiang, Yijun, 2024. "Influence of trade liberalization and digital trade on material footprint in the BRICS region," Resources Policy, Elsevier, vol. 88(C).
    16. Sun, Yunpeng & Bao, Qun & Siao-Yun, Wei & Islam, Misbah ul & Razzaq, Asif, 2022. "Renewable energy transition and environmental sustainability through economic complexity in BRICS countries: Fresh insights from novel Method of Moments Quantile regression," Renewable Energy, Elsevier, vol. 184(C), pages 1165-1176.
    17. Suki, Norazah Mohd & Suki, Norbayah Mohd & Sharif, Arshian & Afshan, Sahar & Jermsittiparsert, Kittisak, 2022. "The role of technology innovation and renewable energy in reducing environmental degradation in Malaysia: A step towards sustainable environment," Renewable Energy, Elsevier, vol. 182(C), pages 245-253.
    18. Wang, Shubin & Li, Jian & Razzaq, Asim, 2023. "Do environmental governance, technology innovation and institutions lead to lower resource footprints: An imperative trajectory for sustainability," Resources Policy, Elsevier, vol. 80(C).
    19. Zhang, Cuifang & Xiang, Xiandeng, 2023. "Fiscal decentralization, environmental policy stringency, and resource sustainability: Panacea or Pandora's box in high resource consuming countries," Resources Policy, Elsevier, vol. 83(C).
    20. Zhang, Zhuo & Zhao, Yongliang & Cai, Haiya & Ajaz, Tahseen, 2023. "Influence of renewable energy infrastructure, Chinese outward FDI, and technical efficiency on ecological sustainability in belt and road node economies," Renewable Energy, Elsevier, vol. 205(C), pages 608-616.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:79:y:2022:i:c:s0301420722005190. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.