IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i5p757-d821150.html
   My bibliography  Save this article

Characteristics of Changes in Urban Land Use and Efficiency Evaluation in the Qinghai–Tibet Plateau from 1990 to 2020

Author

Listed:
  • Shujing Fu

    (Key Laboratory of State Forestry Administration of Soil and Water Conservation, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China)

  • Xuexia Zhang

    (Key Laboratory of State Forestry Administration of Soil and Water Conservation, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China)

  • Wenhui Kuang

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

  • Changqing Guo

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

Abstract

The Qinghai–Tibet Plateau has seen decades of changes in land use/cover as a result of urbanization and regional planning policy. Research on the efficiency of social development aids in the pursuit of social and environmental sustainability. Based on CLUD and socioeconomic statistical data, this study systematically analyses the spatiotemporal evolution characteristics of urban land use in the Qinghai–Tibet Plateau and evaluates its social development efficiency from three perspectives—the holistic, the municipal, and urban hierarchy—by using indicators such as the Moran index, land use efficiency, and urban expansion speed and proportion. Results show that the urbanization rate climbed from 21.26% to 54.95%, and the area of urban lands increased from 201.93 km 2 to 796.59 km 2 from 1990 to 2020, with urban lands expanding from the Lanzhou–Xining City Area to the central and south of the Qinghai–Tibet Plateau. The holistic urban land use efficiency grew from 1.14 to 1.53, while the UPD decreased slightly from 1.44 to 1.31, and the UED increased steadily from 1.40 to 12.97 per decade. Moreover, we should pay attention to the rational allocation of land in human, social and ecosystem terms to comprehensively improve the quality of urbanization across the plateau.

Suggested Citation

  • Shujing Fu & Xuexia Zhang & Wenhui Kuang & Changqing Guo, 2022. "Characteristics of Changes in Urban Land Use and Efficiency Evaluation in the Qinghai–Tibet Plateau from 1990 to 2020," Land, MDPI, vol. 11(5), pages 1-16, May.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:5:p:757-:d:821150
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/5/757/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/5/757/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kairui Guo & Yong Huang & Dan Chen, 2022. "Analysis of the Expansion Characteristics of Rural Settlements Based on Scale Growth Function in Himalayan Region," Land, MDPI, vol. 11(3), pages 1-17, March.
    2. Xue, Dan & Yue, Li & Ahmad, Fayyaz & Draz, Muhammad Umar & Chandio, Abbas Ali & Ahmad, Munir & Amin, Waqas, 2022. "Empirical investigation of urban land use efficiency and influencing factors of the Yellow River basin Chinese cities," Land Use Policy, Elsevier, vol. 117(C).
    3. Weiping Zhang & Peiji Shi & Huali Tong, 2022. "Research on Construction Land Use Benefit and the Coupling Coordination Relationship Based on a Three-Dimensional Frame Model—A Case Study in the Lanzhou-Xining Urban Agglomeration," Land, MDPI, vol. 11(4), pages 1-16, March.
    4. Gao, Deng & Li, Shicheng, 2022. "Spatiotemporal impact of railway network in the Qinghai-Tibet Plateau on accessibility and economic linkages during 1984–2030," Journal of Transport Geography, Elsevier, vol. 100(C).
    5. Xiaodong Yang & Yongxiang Wu & Hang Dang, 2017. "Urban Land Use Efficiency and Coordination in China," Sustainability, MDPI, vol. 9(3), pages 1-12, March.
    6. Diego Rybski & Elsa Arcaute & Michael Batty, 2019. "Urban scaling laws," Environment and Planning B, , vol. 46(9), pages 1605-1610, November.
    7. Yu, Yantuan & Zhang, Ning & Kim, Jong Dae, 2020. "Impact of urbanization on energy demand: An empirical study of the Yangtze River Economic Belt in China," Energy Policy, Elsevier, vol. 139(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ziyang Wang & Peiji Shi & Jing Shi & Xuebin Zhang & Litang Yao, 2023. "Research on Land Use Pattern and Ecological Risk of Lanzhou–Xining Urban Agglomeration from the Perspective of Terrain Gradient," Land, MDPI, vol. 12(5), pages 1-20, April.
    2. Wang, Xiong & Wang, Xiao & Ren, Xiaohang & Wen, Fenghua, 2022. "Can digital financial inclusion affect CO2 emissions of China at the prefecture level? Evidence from a spatial econometric approach," Energy Economics, Elsevier, vol. 109(C).
    3. Razzaq, Asif & Sharif, Arshian & Ozturk, Ilhan & Skare, Marinko, 2022. "Inclusive infrastructure development, green innovation, and sustainable resource management: Evidence from China’s trade-adjusted material footprints," Resources Policy, Elsevier, vol. 79(C).
    4. Rao, Congjun & Zhang, Yue & Wen, Jianghui & Xiao, Xinping & Goh, Mark, 2023. "Energy demand forecasting in China: A support vector regression-compositional data second exponential smoothing model," Energy, Elsevier, vol. 263(PC).
    5. Ramesh Chandra Das & Tonmoy Chatterjee & Enrico Ivaldi, 2022. "Nexus between Housing Price and Magnitude of Pollution: Evidence from the Panel of Some High- and-Low Polluting Cities of the World," Sustainability, MDPI, vol. 14(15), pages 1-18, July.
    6. Zhenyi Wang & Wen Dong & Kun Yang, 2022. "Spatiotemporal Analysis and Risk Assessment Model Research of Diabetes among People over 45 Years Old in China," IJERPH, MDPI, vol. 19(16), pages 1-26, August.
    7. Lisha Pan & Hangang Hu & Xin Jing & Yang Chen & Guan Li & Zhongguo Xu & Yuefei Zhuo & Xueqi Wang, 2022. "The Impacts of Regional Cooperation on Urban Land-Use Efficiency: Evidence from the Yangtze River Delta, China," Land, MDPI, vol. 11(6), pages 1-16, June.
    8. Weiping Zhang & Peiji Shi & Huali Tong, 2022. "Research on Construction Land Use Benefit and the Coupling Coordination Relationship Based on a Three-Dimensional Frame Model—A Case Study in the Lanzhou-Xining Urban Agglomeration," Land, MDPI, vol. 11(4), pages 1-16, March.
    9. Yedong Chen & Jiang Chang & Zixuan Li & Li Ming & Cankun Li & Cheng Li, 2023. "Coupling Coordination and Spatiotemporal Analysis of Urban Compactness and Land-Use Efficiency in Resource-Based Areas: A Case Study of Shanxi Province, China," Land, MDPI, vol. 12(9), pages 1-23, August.
    10. Jiamin Ren & Chenrouyu Zheng & Fuyou Guo & Hongbo Zhao & Shuang Ma & Yu Cheng, 2022. "Spatial Differentiation of Digital Rural Development and Influencing Factors in the Yellow River Basin, China," IJERPH, MDPI, vol. 19(23), pages 1-16, December.
    11. Abdimalik Ali Warsame, 2022. "The Impact of Urbanization on Energy Demand: An Empirical Evidence from Somalia," International Journal of Energy Economics and Policy, Econjournals, vol. 12(1), pages 383-389.
    12. Sijia Li & Meichen Fu & Yi Tian & Yuqing Xiong & Cankun Wei, 2022. "Relationship between Urban Land Use Efficiency and Economic Development Level in the Beijing–Tianjin–Hebei Region," Land, MDPI, vol. 11(7), pages 1-18, June.
    13. Yin Ma & Minrui Zheng & Xinqi Zheng & Yi Huang & Feng Xu & Xiaoli Wang & Jiantao Liu & Yongqiang Lv & Wenchao Liu, 2023. "Land Use Efficiency Assessment under Sustainable Development Goals: A Systematic Review," Land, MDPI, vol. 12(4), pages 1-21, April.
    14. Janka Lengyel & Seraphim Alvanides & Jan Friedrich, 2023. "Modelling the interdependence of spatial scales in urban systems," Environment and Planning B, , vol. 50(1), pages 182-197, January.
    15. Hao Su & Shuo Yang, 2022. "Spatio-Temporal Urban Land Green Use Efficiency under Carbon Emission Constraints in the Yellow River Basin, China," IJERPH, MDPI, vol. 19(19), pages 1-28, October.
    16. Zhuoxi Yu & Shan Liu & Zhichuan Zhu & Lianyan Fu, 2023. "Spatial Imbalance, Dynamic Evolution and Convergence of the Digital Economy: Analysis Based on Panel Data of 278 Cities in China," Sustainability, MDPI, vol. 15(9), pages 1-26, April.
    17. Jingyi Wang & Kaisi Sun & Jiupai Ni & Deti Xie, 2020. "Evaluation and Factor Analysis of the Intensive Use of Urban Land Based on Technical Efficiency Measurement—A Case Study of 38 Districts and Counties in Chongqing, China," Sustainability, MDPI, vol. 12(20), pages 1-19, October.
    18. Tingting Yang & Xuefeng Guan & Yuehui Qian & Weiran Xing & Huayi Wu, 2019. "Efficiency Evaluation of Urban Road Transport and Land Use in Hunan Province of China Based on Hybrid Data Envelopment Analysis (DEA) Models," Sustainability, MDPI, vol. 11(14), pages 1-18, July.
    19. Chuansong Zhao & Ran Geng & Jianxu Liu & Liuying Peng & Woraphon Yamaka, 2023. "Spatiotemporal Evolution and Driving Factors of Land Development: Evidence from Shandong Province, China," Sustainability, MDPI, vol. 15(20), pages 1-21, October.
    20. Bonoua Faye & Guoming Du & Ru Zhang, 2022. "Efficiency Analysis of Land Use and the Degree of Coupling Link between Population Growth and Global Built-Up Area in the Subregion of West Africa," Land, MDPI, vol. 11(6), pages 1-21, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:5:p:757-:d:821150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.