IDEAS home Printed from https://ideas.repec.org/a/eee/lauspo/v117y2022ics0264837722001442.html
   My bibliography  Save this article

Empirical investigation of urban land use efficiency and influencing factors of the Yellow River basin Chinese cities

Author

Listed:
  • Xue, Dan
  • Yue, Li
  • Ahmad, Fayyaz
  • Draz, Muhammad Umar
  • Chandio, Abbas Ali
  • Ahmad, Munir
  • Amin, Waqas

Abstract

This article evaluated the urban land use efficiency (ULUE) of 57 cities in the Yellow River Basin (YRB) from 2005 to 2017 with the super epsilon based measure (Super-EBM) model, analyzed its difference characteristics and evolution trend by using the Theil index and kernel density function, revealed its spatial correlation by Moran index and LISA clustering, and also explored its influencing factors by the Tobit model. The results show that the ULUE of the YRB first declined and then increased, with the highest in the upstream areas, followed by the downstream areas, while the lowest in the middle reaches of the YRB. The ULUE in the YRB presented the characteristics of continuous distribution, and the ULUE in the cities south of the Yellow River was significantly higher than that in the cities north of the Yellow River. Secondly, the imbalance of ULUE in the YRB was aggravated, and the difference between groups was small while the difference within the group was absolutely dominant. The imbalance of ULUE in the midstream areas of the YRB dominated the whole basin. Thirdly, the ULUE of the YRB had a significant spatial correlation. In 2017, the local spatial correlation was mainly low-low aggregation, and the clustering area was concentrated in resource-based cities in Shanxi Province. Finally, the impact of economic development on ULUE in the YRB presented a "U" curve relationship. The proportion of secondary industry, population density, introduction of foreign capital, innovation level and traffic facilities can significantly promote the ULUE in the Basin, while land urbanization and environmental regulation had a negative impact on the ULUE of the YRB. This paper is important to realize the intensive use of urban land and achieve high-quality development in the YRB.

Suggested Citation

  • Xue, Dan & Yue, Li & Ahmad, Fayyaz & Draz, Muhammad Umar & Chandio, Abbas Ali & Ahmad, Munir & Amin, Waqas, 2022. "Empirical investigation of urban land use efficiency and influencing factors of the Yellow River basin Chinese cities," Land Use Policy, Elsevier, vol. 117(C).
  • Handle: RePEc:eee:lauspo:v:117:y:2022:i:c:s0264837722001442
    DOI: 10.1016/j.landusepol.2022.106117
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264837722001442
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.landusepol.2022.106117?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xie, Hualin & Chen, Qianru & Lu, Fucai & Wu, Qing & Wang, Wei, 2018. "Spatial-temporal disparities, saving potential and influential factors of industrial land use efficiency: A case study in urban agglomeration in the middle reaches of the Yangtze River," Land Use Policy, Elsevier, vol. 75(C), pages 518-529.
    2. Zhu, Xinhua & Li, Yan & Zhang, Peifeng & Wei, Yigang & Zheng, Xuyang & Xie, Lingling, 2019. "Temporal–spatial characteristics of urban land use efficiency of China’s 35mega cities based on DEA: Decomposing technology and scale efficiency," Land Use Policy, Elsevier, vol. 88(C).
    3. Zhao, Zhe & Bai, Yuping & Wang, Guofeng & Chen, Jiancheng & Yu, Jiangli & Liu, Wei, 2018. "Land eco-efficiency for new-type urbanization in the Beijing-Tianjin-Hebei Region," Technological Forecasting and Social Change, Elsevier, vol. 137(C), pages 19-26.
    4. Gao, Xin & Zhang, Anlu & Sun, Zhanli, 2020. "How regional economic integration influence on urban land use efficiency? A case study of Wuhan metropolitan area, China," Land Use Policy, Elsevier, vol. 90(C).
    5. Tone, Kaoru & Tsutsui, Miki, 2010. "An epsilon-based measure of efficiency in DEA - A third pole of technical efficiency," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1554-1563, December.
    6. Brian R. Copeland & M. Scott Taylor, 2004. "Trade, Growth, and the Environment," Journal of Economic Literature, American Economic Association, vol. 42(1), pages 7-71, March.
    7. Yu, Junqing & Zhou, Kaile & Yang, Shanlin, 2019. "Land use efficiency and influencing factors of urban agglomerations in China," Land Use Policy, Elsevier, vol. 88(C).
    8. Lin Qiao & Huiping Huang & Yichen Tian, 2019. "The Identification and Use Efficiency Evaluation of Urban Industrial Land Based on Multi-Source Data," Sustainability, MDPI, vol. 11(21), pages 1-17, November.
    9. Capozza, Dennis R. & Helsley, Robert W., 1989. "The fundamentals of land prices and urban growth," Journal of Urban Economics, Elsevier, vol. 26(3), pages 295-306, November.
    10. Jie Zhang & Zhencheng Xing & Jigan Wang, 2016. "Analysis of CO 2 Emission Performance and Abatement Potential for Municipal Industrial Sectors in Jiangsu, China," Sustainability, MDPI, vol. 8(7), pages 1-15, July.
    11. Liu, Jing & Jin, Xiaobin & Xu, Weiyi & Fan, Yeting & Ren, Jie & Zhang, Xiaolin & Zhou, Yinkang, 2019. "Spatial coupling differentiation and development zoning trade-off of land space utilization efficiency in eastern China," Land Use Policy, Elsevier, vol. 85(C), pages 310-327.
    12. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yue Zhou & Yi Chen & Yi Hu, 2021. "Assessing Efficiency of Urban Land Utilisation under Environmental Constraints in Yangtze River Delta, China," IJERPH, MDPI, vol. 18(23), pages 1-18, November.
    2. Yin Ma & Minrui Zheng & Xinqi Zheng & Yi Huang & Feng Xu & Xiaoli Wang & Jiantao Liu & Yongqiang Lv & Wenchao Liu, 2023. "Land Use Efficiency Assessment under Sustainable Development Goals: A Systematic Review," Land, MDPI, vol. 12(4), pages 1-21, April.
    3. Mengchao Yao & Yihua Zhang, 2021. "Evaluation and Optimization of Urban Land-Use Efficiency: A Case Study in Sichuan Province of China," Sustainability, MDPI, vol. 13(4), pages 1-22, February.
    4. Rongtian Zhang & Jianfei Lu, 2022. "Spatial–Temporal Pattern and Convergence Characteristics of Provincial Urban Land Use Efficiency under Environmental Constraints in China," IJERPH, MDPI, vol. 19(17), pages 1-15, August.
    5. Xinhai Lu & Yifeng Tang & Shangan Ke, 2021. "Does the Construction and Operation of High-Speed Rail Improve Urban Land Use Efficiency? Evidence from China," Land, MDPI, vol. 10(3), pages 1-15, March.
    6. Yahong Liu & Hailian Sun & Lei Shi & Huimin Wang & Zhai Xiu & Xiao Qiu & Hong Chang & Yu Xie & Yang Wang & Chengjie Wang, 2021. "Spatial-Temporal Changes and Driving Factors of Land-Use Eco-Efficiency Incorporating Ecosystem Services in China," Sustainability, MDPI, vol. 13(2), pages 1-15, January.
    7. Jing Ning & Mengqiu Wang & Ning Wang & Yu Sun & Haozhi Ma, 2025. "Assessment, Evolutionary Trends, and Convergence of Land Green Utilization Efficiency in Three Northeastern Provinces of China Undergoing Population Shrinkage," Sustainability, MDPI, vol. 17(5), pages 1-18, February.
    8. Chengzhen Song & Qingfang Liu & Jinping Song & Zhengyun Jiang & Zhilin Lu & Yueying Chen, 2022. "Land Use Efficiency in the Yellow River Basin in the Background of China’s Economic Transformation: Spatial-Temporal Characteristics and Influencing Factors," Land, MDPI, vol. 11(12), pages 1-22, December.
    9. Lisha Pan & Hangang Hu & Xin Jing & Yang Chen & Guan Li & Zhongguo Xu & Yuefei Zhuo & Xueqi Wang, 2022. "The Impacts of Regional Cooperation on Urban Land-Use Efficiency: Evidence from the Yangtze River Delta, China," Land, MDPI, vol. 11(6), pages 1-16, June.
    10. Xinhai Lu & Zhenxing Shi & Jia Li & Junhao Dong & Mingjie Song & Jiao Hou, 2022. "Research on the Impact of Factor Flow on Urban Land Use Efficiency from the Perspective of Urbanization," Land, MDPI, vol. 11(3), pages 1-17, March.
    11. Yayuan Pang & Xinjun Wang, 2020. "Land-Use Efficiency in Shandong (China): Empirical Analysis Based on a Super-SBM Model," Sustainability, MDPI, vol. 12(24), pages 1-20, December.
    12. Wenfang Pu & Anlu Zhang & Lanjiao Wen, 2021. "Can China’s Resource-Saving and Environmentally Friendly Society Really Improve the Efficiency of Industrial Land Use?," Land, MDPI, vol. 10(7), pages 1-19, July.
    13. Han Chen & Chunyu Meng & Qilin Cao, 2022. "Measurement and Influencing Factors of Low Carbon Urban Land Use Efficiency—Based on Non-Radial Directional Distance Function," Land, MDPI, vol. 11(7), pages 1-16, July.
    14. Aiping Wang & Weifen Lin & Bei Liu & Hui Wang & Hong Xu, 2021. "Does Smart City Construction Improve the Green Utilization Efficiency of Urban Land?," Land, MDPI, vol. 10(6), pages 1-18, June.
    15. Lu, Xinhai & Chen, Danling & Kuang, Bing & Zhang, Chaozheng & Cheng, Chen, 2020. "Is high-tech zone a policy trap or a growth drive? Insights from the perspective of urban land use efficiency," Land Use Policy, Elsevier, vol. 95(C).
    16. Xiao Han & Anlu Zhang & Yinying Cai, 2020. "Spatio-Econometric Analysis of Urban Land Use Efficiency in China from the Perspective of Natural Resources Input and Undesirable Outputs: A Case Study of 287 Cities in China," IJERPH, MDPI, vol. 17(19), pages 1-21, October.
    17. Tan, Shukui & Hu, Bixia & Kuang, Bing & Zhou, Min, 2021. "Regional differences and dynamic evolution of urban land green use efficiency within the Yangtze River Delta, China," Land Use Policy, Elsevier, vol. 106(C).
    18. Huifang Cheng & Ting Yu & Hao Zhang & Kaifeng Duan & Jianing Zhu, 2022. "Dynamic Estimation of Urban Land Use Efficiency and Sustainability Analysis in China," Sustainability, MDPI, vol. 14(21), pages 1-16, October.
    19. Bingqing Li & Zhanqi Wang & Feng Xu, 2022. "Does Optimization of Industrial Structure Improve Green Efficiency of Industrial Land Use in China?," IJERPH, MDPI, vol. 19(15), pages 1-18, July.
    20. Di Zhu & Yinghong Wang & Shangui Peng & Fenglin Zhang, 2022. "Influence Mechanism of Polycentric Spatial Structure on Urban Land Use Efficiency: A Moderated Mediation Model," IJERPH, MDPI, vol. 19(24), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:lauspo:v:117:y:2022:i:c:s0264837722001442. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joice Jiang (email available below). General contact details of provider: https://www.journals.elsevier.com/land-use-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.