IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i23p15812-d986483.html
   My bibliography  Save this article

From ‘Zero’ to ‘Positive’ Energy Concepts and from Buildings to Districts—A Portfolio of 51 European Success Stories

Author

Listed:
  • Sesil Koutra

    (Faculty of Architecture and Urban Planning, University of Mons, 88 Str. Havre, 7000 Mons, Belgium)

Abstract

Since 2020, Europe has introduced strategies and key policies to promote common efforts on a roadmap toward energy efficiency and decarbonization. From ‘low’ to ‘passive’ and from ‘zero’ to ‘positive’, the concepts have fascinated the scientific community around the globe and promise the deployment of planning responses to the challenges of decarbonization faced by the European and local agendas. This works provides an overview of a comprehensive understanding of emerging concepts with a focus beyond the boundaries of an individual building. The booklet of 51 European projects, firstly introduced in Joint Programming Initiative documents, unveiled the prioritization of energy efficiency and the path for the enhancement of environmentally friendly communities. In this sense, this work presents an overview of the Net-Zero Energy Districts, and beyond, namely through the discussion of different aspects and dimensions. Based on published scientific literature, this work collects, organizes and discusses approaches of European cases, concluding with the knowledge base to support further developments and reinforce an established pathway for future implementations.

Suggested Citation

  • Sesil Koutra, 2022. "From ‘Zero’ to ‘Positive’ Energy Concepts and from Buildings to Districts—A Portfolio of 51 European Success Stories," Sustainability, MDPI, vol. 14(23), pages 1-23, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:15812-:d:986483
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/23/15812/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/23/15812/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhou, Yuekuan & Cao, Sunliang & Hensen, Jan L.M. & Lund, Peter D., 2019. "Energy integration and interaction between buildings and vehicles: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    2. Henrik Lund & Finn Arler & Poul Alberg Østergaard & Frede Hvelplund & David Connolly & Brian Vad Mathiesen & Peter Karnøe, 2017. "Simulation versus Optimisation: Theoretical Positions in Energy System Modelling," Energies, MDPI, vol. 10(7), pages 1-17, June.
    3. René Kemp, 2010. "The Dutch energy transition approach," International Economics and Economic Policy, Springer, vol. 7(2), pages 291-316, August.
    4. Kennedy, Scott & Sgouridis, Sgouris, 2011. "Rigorous classification and carbon accounting principles for low and Zero Carbon Cities," Energy Policy, Elsevier, vol. 39(9), pages 5259-5268, September.
    5. Savis Gohari Krangsås & Koen Steemers & Thaleia Konstantinou & Silvia Soutullo & Mingming Liu & Emanuela Giancola & Bahri Prebreza & Touraj Ashrafian & Lina Murauskaitė & Nienke Maas, 2021. "Positive Energy Districts: Identifying Challenges and Interdependencies," Sustainability, MDPI, vol. 13(19), pages 1-20, September.
    6. Panagiotidou, Maria & Fuller, Robert J., 2013. "Progress in ZEBs—A review of definitions, policies and construction activity," Energy Policy, Elsevier, vol. 62(C), pages 196-206.
    7. Becchio, Cristina & Bottero, Marta Carla & Corgnati, Stefano Paolo & Dell’Anna, Federico, 2018. "Decision making for sustainable urban energy planning: an integrated evaluation framework of alternative solutions for a NZED (Net Zero-Energy District) in Turin," Land Use Policy, Elsevier, vol. 78(C), pages 803-817.
    8. Boccalatte, A. & Fossa, M. & Ménézo, C., 2020. "Best arrangement of BIPV surfaces for future NZEB districts while considering urban heat island effects and the reduction of reflected radiation from solar façades," Renewable Energy, Elsevier, vol. 160(C), pages 686-697.
    9. Morvaj, Boran & Evins, Ralph & Carmeliet, Jan, 2016. "Optimising urban energy systems: Simultaneous system sizing, operation and district heating network layout," Energy, Elsevier, vol. 116(P1), pages 619-636.
    10. Silvia Bossi & Christoph Gollner & Sarah Theierling, 2020. "Towards 100 Positive Energy Districts in Europe: Preliminary Data Analysis of 61 European Cases," Energies, MDPI, vol. 13(22), pages 1-13, November.
    11. Sarralde, Juan José & Quinn, David James & Wiesmann, Daniel & Steemers, Koen, 2015. "Solar energy and urban morphology: Scenarios for increasing the renewable energy potential of neighbourhoods in London," Renewable Energy, Elsevier, vol. 73(C), pages 10-17.
    12. Swan, Lukas G. & Ugursal, V. Ismet, 2009. "Modeling of end-use energy consumption in the residential sector: A review of modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1819-1835, October.
    13. Salom, Jaume & Marszal, Anna Joanna & Widén, Joakim & Candanedo, José & Lindberg, Karen Byskov, 2014. "Analysis of load match and grid interaction indicators in net zero energy buildings with simulated and monitored data," Applied Energy, Elsevier, vol. 136(C), pages 119-131.
    14. Sesil Koutra & Claire Pagnoule & Nikolaos-Fivos Galatoulas & Ali Bagheri & Thomas Waroux & Vincent Becue & Christos S. Ioakimidis, 2019. "The Zero-Energy Idea in Districts: Application of a Methodological Approach to a Case Study of Epinlieu (Mons)," Sustainability, MDPI, vol. 11(17), pages 1-27, September.
    15. Fonseca, Jimeno A. & Schlueter, Arno, 2015. "Integrated model for characterization of spatiotemporal building energy consumption patterns in neighborhoods and city districts," Applied Energy, Elsevier, vol. 142(C), pages 247-265.
    16. Østergaard, Poul Alberg & Lund, Henrik, 2011. "A renewable energy system in Frederikshavn using low-temperature geothermal energy for district heating," Applied Energy, Elsevier, vol. 88(2), pages 479-487, February.
    17. Ghafghazi, S. & Sowlati, T. & Sokhansanj, S. & Melin, S., 2010. "A multicriteria approach to evaluate district heating system options," Applied Energy, Elsevier, vol. 87(4), pages 1134-1140, April.
    18. Mohajeri, Nahid & Upadhyay, Govinda & Gudmundsson, Agust & Assouline, Dan & Kämpf, Jérôme & Scartezzini, Jean-Louis, 2016. "Effects of urban compactness on solar energy potential," Renewable Energy, Elsevier, vol. 93(C), pages 469-482.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdelkader Sarri & Saleh Nasser Al-Saadi & Müslüm Arıcı & Djamel Bechki & Hamza Bouguettaia, 2023. "Architectural Design Strategies for Enhancement of Thermal and Energy Performance of PCMs-Embedded Envelope System for an Office Building in a Typical Arid Saharan Climate," Sustainability, MDPI, vol. 15(2), pages 1-29, January.
    2. Maurizio Sibilla & Dhouha Touibi & Fonbeyin Henry Abanda, 2023. "Rethinking Abandoned Buildings as Positive Energy Buildings in a Former Industrial Site in Italy," Energies, MDPI, vol. 16(11), pages 1-18, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sassenou, L.-N. & Olivieri, L. & Olivieri, F., 2024. "Challenges for positive energy districts deployment: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    2. Ferrari, Simone & Zagarella, Federica & Caputo, Paola & D'Amico, Antonino, 2019. "Results of a literature review on methods for estimating buildings energy demand at district level," Energy, Elsevier, vol. 175(C), pages 1130-1137.
    3. Natanian, Jonathan & Aleksandrowicz, Or & Auer, Thomas, 2019. "A parametric approach to optimizing urban form, energy balance and environmental quality: The case of Mediterranean districts," Applied Energy, Elsevier, vol. 254(C).
    4. Mohajeri, Nahid & Perera, A.T.D. & Coccolo, Silvia & Mosca, Lucas & Le Guen, Morgane & Scartezzini, Jean-Louis, 2019. "Integrating urban form and distributed energy systems: Assessment of sustainable development scenarios for a Swiss village to 2050," Renewable Energy, Elsevier, vol. 143(C), pages 810-826.
    5. Klemm, Christian & Vennemann, Peter, 2021. "Modeling and optimization of multi-energy systems in mixed-use districts: A review of existing methods and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    6. Soares, N. & Bastos, J. & Pereira, L. Dias & Soares, A. & Amaral, A.R. & Asadi, E. & Rodrigues, E. & Lamas, F.B. & Monteiro, H. & Lopes, M.A.R. & Gaspar, A.R., 2017. "A review on current advances in the energy and environmental performance of buildings towards a more sustainable built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 845-860.
    7. Mauree, Dasaraden & Naboni, Emanuele & Coccolo, Silvia & Perera, A.T.D. & Nik, Vahid M. & Scartezzini, Jean-Louis, 2019. "A review of assessment methods for the urban environment and its energy sustainability to guarantee climate adaptation of future cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 733-746.
    8. Federica Leone & Francesco Reda & Ala Hasan & Hassam ur Rehman & Fausto Carmelo Nigrelli & Francesco Nocera & Vincenzo Costanzo, 2022. "Lessons Learned from Positive Energy District (PED) Projects: Cataloguing and Analysing Technology Solutions in Different Geographical Areas in Europe," Energies, MDPI, vol. 16(1), pages 1-28, December.
    9. Pickering, B. & Choudhary, R., 2019. "District energy system optimisation under uncertain demand: Handling data-driven stochastic profiles," Applied Energy, Elsevier, vol. 236(C), pages 1138-1157.
    10. Aparisi-Cerdá, I. & Ribó-Pérez, D. & Gómez-Navarro, T. & García-Melón, M. & Peris-Blanes, J., 2024. "Prioritising Positive Energy Districts to achieve carbon neutral cities: Delphi-DANP approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    11. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    12. Waibel, Christoph & Evins, Ralph & Carmeliet, Jan, 2019. "Co-simulation and optimization of building geometry and multi-energy systems: Interdependencies in energy supply, energy demand and solar potentials," Applied Energy, Elsevier, vol. 242(C), pages 1661-1682.
    13. Luthander, Rasmus & Nilsson, Annica M. & Widén, Joakim & Åberg, Magnus, 2019. "Graphical analysis of photovoltaic generation and load matching in buildings: A novel way of studying self-consumption and self-sufficiency," Applied Energy, Elsevier, vol. 250(C), pages 748-759.
    14. Villa-Arrieta, Manuel & Sumper, Andreas, 2019. "Economic evaluation of Nearly Zero Energy Cities," Applied Energy, Elsevier, vol. 237(C), pages 404-416.
    15. Scheller, Fabian & Bruckner, Thomas, 2019. "Energy system optimization at the municipal level: An analysis of modeling approaches and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 444-461.
    16. Marquant, Julien F. & Evins, Ralph & Bollinger, L. Andrew & Carmeliet, Jan, 2017. "A holarchic approach for multi-scale distributed energy system optimisation," Applied Energy, Elsevier, vol. 208(C), pages 935-953.
    17. Jie Zheng & Yihan Ma & Wei Zhang & Yan Jiao & Tiantian Du & Jizhe Han & Yukun Zhang, 2025. "Evidence-Based Optimization of Urban Block Morphology for Enhanced Photovoltaic Potential," Energies, MDPI, vol. 18(18), pages 1-29, September.
    18. Ma, Weiwu & Fang, Song & Liu, Gang & Zhou, Ruoyu, 2017. "Modeling of district load forecasting for distributed energy system," Applied Energy, Elsevier, vol. 204(C), pages 181-205.
    19. Panagiotis Moraitis & Bala Bhavya Kausika & Nick Nortier & Wilfried Van Sark, 2018. "Urban Environment and Solar PV Performance: The Case of the Netherlands," Energies, MDPI, vol. 11(6), pages 1-14, May.
    20. Zhang, Chen & Li, Zhixin & Jiang, Haihua & Luo, Yongqiang & Xu, Shen, 2021. "Deep learning method for evaluating photovoltaic potential of urban land-use: A case study of Wuhan, China," Applied Energy, Elsevier, vol. 283(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:15812-:d:986483. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.