IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i11p4503-d1163020.html
   My bibliography  Save this article

Rethinking Abandoned Buildings as Positive Energy Buildings in a Former Industrial Site in Italy

Author

Listed:
  • Maurizio Sibilla

    (School of the Built Environment, Oxford Brookes University, Oxford OX3 0BP, UK)

  • Dhouha Touibi

    (School of the Built Environment, Oxford Brookes University, Oxford OX3 0BP, UK)

  • Fonbeyin Henry Abanda

    (School of the Built Environment, Oxford Brookes University, Oxford OX3 0BP, UK)

Abstract

The transition from nearly zero-emission building (NZEB) to positive energy building (PEB) models is a new trend, justified by the need to increase the efforts to address the climate change targets and the ambition for a clean energy transition in the construction sector. In line with this scenario, this study assumes that PEB may be applied to meet climate change targets and promote new approaches to urban regeneration plans. It focuses on the functional and energy regeneration of abandoned buildings, considering that many abandoned European buildings are often located in a strategic part of the city. Therefore, the research question is as follows: to what extent can abandoned buildings be converted into a PEB? What would be the meaning of this new association? In order to answer this question, this study developed a procedure to transform an abandoned building into a PEB, implemented through a case study of a former Italian industrial site. Findings pointed out the variables impacting PEB configuration and were used to support a discussion, stressing how rethinking abandoned buildings as PEB may drive new trends to synchronise the socio-technical evolution of energy infrastructure and urban regeneration plans.

Suggested Citation

  • Maurizio Sibilla & Dhouha Touibi & Fonbeyin Henry Abanda, 2023. "Rethinking Abandoned Buildings as Positive Energy Buildings in a Former Industrial Site in Italy," Energies, MDPI, vol. 16(11), pages 1-18, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:11:p:4503-:d:1163020
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/11/4503/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/11/4503/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Blumberga, Andra & Vanaga, Ruta & Freimanis, Ritvars & Blumberga, Dagnija & Antužs, Juris & Krastiņš, Artūrs & Jankovskis, Ivars & Bondars, Edgars & Treija, Sandra, 2020. "Transition from traditional historic urban block to positive energy block," Energy, Elsevier, vol. 202(C).
    2. Suzi Dilara Mangan, 2023. "A Performance-Based Decision Support Workflow for Retrofitting Residential Buildings," Sustainability, MDPI, vol. 15(3), pages 1-17, January.
    3. Wu, Raphael & Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2017. "Multiobjective optimisation of energy systems and building envelope retrofit in a residential community," Applied Energy, Elsevier, vol. 190(C), pages 634-649.
    4. Silvia Bossi & Christoph Gollner & Sarah Theierling, 2020. "Towards 100 Positive Energy Districts in Europe: Preliminary Data Analysis of 61 European Cases," Energies, MDPI, vol. 13(22), pages 1-13, November.
    5. Ascione, Fabrizio & Bianco, Nicola & De Stasio, Claudio & Mauro, Gerardo Maria & Vanoli, Giuseppe Peter, 2017. "Artificial neural networks to predict energy performance and retrofit scenarios for any member of a building category: A novel approach," Energy, Elsevier, vol. 118(C), pages 999-1017.
    6. Marta Bottero & Chiara D’Alpaos & Alessandra Oppio, 2019. "Ranking of Adaptive Reuse Strategies for Abandoned Industrial Heritage in Vulnerable Contexts: A Multiple Criteria Decision Aiding Approach," Sustainability, MDPI, vol. 11(3), pages 1-18, February.
    7. Mia Ala-Juusela & Hassam ur Rehman & Mari Hukkalainen & Francesco Reda, 2021. "Positive Energy Building Definition with the Framework, Elements and Challenges of the Concept," Energies, MDPI, vol. 14(19), pages 1-18, October.
    8. Battaglia, V. & Massarotti, N. & Vanoli, L., 2022. "Urban regeneration plans: Bridging the gap between planning and design energy districts," Energy, Elsevier, vol. 254(PA).
    9. Sesil Koutra, 2022. "From ‘Zero’ to ‘Positive’ Energy Concepts and from Buildings to Districts—A Portfolio of 51 European Success Stories," Sustainability, MDPI, vol. 14(23), pages 1-23, November.
    10. Maurizio Sibilla & Fonbeyin Henry Abanda, 2022. "Multi-Criteria Decision Making Optimisation Framework for Positive Energy Blocks for Cities," Sustainability, MDPI, vol. 14(1), pages 1-20, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Federica Leone & Ala Hasan & Francesco Reda & Hassam ur Rehman & Fausto Carmelo Nigrelli & Francesco Nocera & Vincenzo Costanzo, 2023. "Supporting Cities towards Carbon Neutral Transition through Territorial Acupuncture," Sustainability, MDPI, vol. 15(5), pages 1-31, February.
    2. Federica Leone & Francesco Reda & Ala Hasan & Hassam ur Rehman & Fausto Carmelo Nigrelli & Francesco Nocera & Vincenzo Costanzo, 2022. "Lessons Learned from Positive Energy District (PED) Projects: Cataloguing and Analysing Technology Solutions in Different Geographical Areas in Europe," Energies, MDPI, vol. 16(1), pages 1-28, December.
    3. Khayatian, Fazel & Sarto, Luca & Dall'O', Giuliano, 2017. "Building energy retrofit index for policy making and decision support at regional and national scales," Applied Energy, Elsevier, vol. 206(C), pages 1062-1075.
    4. Guariso, Giorgio & Sangiorgio, Matteo, 2019. "Multi-objective planning of building stock renovation," Energy Policy, Elsevier, vol. 130(C), pages 101-110.
    5. Waibel, Christoph & Evins, Ralph & Carmeliet, Jan, 2019. "Co-simulation and optimization of building geometry and multi-energy systems: Interdependencies in energy supply, energy demand and solar potentials," Applied Energy, Elsevier, vol. 242(C), pages 1661-1682.
    6. Mateusz Naramski & Adam R. Szromek, 2019. "Configuring a Trust-based Inter-organizational Cooperation Network for Post-industrial Tourist Organizations on a Tourist Route," Sustainability, MDPI, vol. 11(13), pages 1-20, June.
    7. Hanan S.S. Ibrahim & Ahmed Z. Khan & Shady Attia & Yehya Serag, 2021. "Classification of Heritage Residential Building Stock and Defining Sustainable Retrofitting Scenarios in Khedivial Cairo," Sustainability, MDPI, vol. 13(2), pages 1-26, January.
    8. Ali Hainoun & Hans-Martin Neumann & Naomi Morishita-Steffen & Baptiste Mougeot & Étienne Vignali & Florian Mandel & Felix Hörmann & Sebastian Stortecky & Katharina Walter & Martin Kaltenhauser-Barth &, 2022. "Smarter Together: Monitoring and Evaluation of Integrated Building Solutions for Low-Energy Districts of Lighthouse Cities Lyon, Munich, and Vienna," Energies, MDPI, vol. 15(19), pages 1-26, September.
    9. Axel Bruck & Luca Casamassima & Ardak Akhatova & Lukas Kranzl & Kostas Galanakis, 2022. "Creating Comparability among European Neighbourhoods to Enable the Transition of District Energy Infrastructures towards Positive Energy Districts," Energies, MDPI, vol. 15(13), pages 1-21, June.
    10. Simone Giostra & Gabriele Masera & Rafaella Monteiro, 2022. "Solar Typologies: A Comparative Analysis of Urban Form and Solar Potential," Sustainability, MDPI, vol. 14(15), pages 1-31, July.
    11. Abdelkader Sarri & Saleh Nasser Al-Saadi & Müslüm Arıcı & Djamel Bechki & Hamza Bouguettaia, 2023. "Architectural Design Strategies for Enhancement of Thermal and Energy Performance of PCMs-Embedded Envelope System for an Office Building in a Typical Arid Saharan Climate," Sustainability, MDPI, vol. 15(2), pages 1-29, January.
    12. Jeong, Kwangbok & Hong, Taehoon & Kim, Jimin & Cho, Kyuman, 2019. "Development of a multi-objective optimization model for determining the optimal CO2 emissions reduction strategies for a multi-family housing complex," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 118-131.
    13. Thrampoulidis, Emmanouil & Mavromatidis, Georgios & Lucchi, Aurelien & Orehounig, Kristina, 2021. "A machine learning-based surrogate model to approximate optimal building retrofit solutions," Applied Energy, Elsevier, vol. 281(C).
    14. Martin Eriksson & Jan Akander & Bahram Moshfegh, 2022. "Investigating Energy Use in a City District in Nordic Climate Using Energy Signature," Energies, MDPI, vol. 15(5), pages 1-22, March.
    15. Rabani, Mehrdad & Bayera Madessa, Habtamu & Mohseni, Omid & Nord, Natasa, 2020. "Minimizing delivered energy and life cycle cost using Graphical script: An office building retrofitting case," Applied Energy, Elsevier, vol. 268(C).
    16. Mohamed Hamdy & Gerardo Maria Mauro, 2017. "Multi-Objective Optimization of Building Energy Design to Reconcile Collective and Private Perspectives: CO 2 -eq vs. Discounted Payback Time," Energies, MDPI, vol. 10(7), pages 1-26, July.
    17. Di Natale, L. & Svetozarevic, B. & Heer, P. & Jones, C.N., 2023. "Towards scalable physically consistent neural networks: An application to data-driven multi-zone thermal building models," Applied Energy, Elsevier, vol. 340(C).
    18. Haonan Zhang, 2023. "Leveraging policy instruments and financial incentives to reduce embodied carbon in energy retrofits," Papers 2304.03403, arXiv.org.
    19. Anastasovski, Aleksandar, 2023. "What is needed for transformation of industrial parks into potential positive energy industrial parks? A review," Energy Policy, Elsevier, vol. 173(C).
    20. Mohajeri, Nahid & Perera, A.T.D. & Coccolo, Silvia & Mosca, Lucas & Le Guen, Morgane & Scartezzini, Jean-Louis, 2019. "Integrating urban form and distributed energy systems: Assessment of sustainable development scenarios for a Swiss village to 2050," Renewable Energy, Elsevier, vol. 143(C), pages 810-826.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:11:p:4503-:d:1163020. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.