IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6260-d648248.html
   My bibliography  Save this article

Positive Energy Building Definition with the Framework, Elements and Challenges of the Concept

Author

Listed:
  • Mia Ala-Juusela

    (VTT Technical Research Centre of Finland Ltd., Tekniikantie 21, 02150 Espoo, Finland)

  • Hassam ur Rehman

    (VTT Technical Research Centre of Finland Ltd., Tekniikantie 21, 02150 Espoo, Finland)

  • Mari Hukkalainen

    (VTT Technical Research Centre of Finland Ltd., Tekniikantie 21, 02150 Espoo, Finland)

  • Francesco Reda

    (VTT Technical Research Centre of Finland Ltd., Tekniikantie 21, 02150 Espoo, Finland)

Abstract

Buildings account for 36% of the final energy demand and 39% of CO 2 emissions worldwide. Targets for increasing the energy efficiency of buildings and reducing building related emissions is an important part of the energy policy to reach the Paris agreement within the United Nations Framework Convention on Climate Change. While nearly zero energy buildings are the new norm in the EU, the research is advancing towards positive energy buildings, which contribute to the surrounding community by providing emission-free energy. This paper suggests a definition for positive energy building and presents the framework, elements, and challenges of the concept. In a positive energy building, the annual renewable energy production in the building site exceeds the energy demand of the building. This increases two-way interactions with energy grids, requiring a broader approach compared to zero energy buildings. The role of energy flexibility grows when the share of fluctuating renewable energy increases. The presented framework is designed with balancing two important perspectives: technical and user-centric approaches. It can be accommodated to different operational conditions, regulations, and climates. Potential challenges and opportunities are also discussed, such as the present issues in the building’s balancing boundary, electric vehicle integration, and smart readiness indicators.

Suggested Citation

  • Mia Ala-Juusela & Hassam ur Rehman & Mari Hukkalainen & Francesco Reda, 2021. "Positive Energy Building Definition with the Framework, Elements and Challenges of the Concept," Energies, MDPI, vol. 14(19), pages 1-18, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6260-:d:648248
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6260/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6260/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Hongwei & Svendsen, Svend, 2012. "Energy and exergy analysis of low temperature district heating network," Energy, Elsevier, vol. 45(1), pages 237-246.
    2. Manfren, Massimiliano & Caputo, Paola & Costa, Gaia, 2011. "Paradigm shift in urban energy systems through distributed generation: Methods and models," Applied Energy, Elsevier, vol. 88(4), pages 1032-1048, April.
    3. Buffa, Simone & Cozzini, Marco & D’Antoni, Matteo & Baratieri, Marco & Fedrizzi, Roberto, 2019. "5th generation district heating and cooling systems: A review of existing cases in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 504-522.
    4. Zhen Qin & Kai Wang & Wei Tong & Chenzhen Ji, 2020. "Thermal Energy Storage for Solar Energy Utilization: Fundamentals and Applications," Chapters, in: Mansour Al Qubeissi & Ahmad El-Kharouf & Hakan Serhad Soyhan (ed.), Renewable Energy - Resources, Challenges and Applications, IntechOpen.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yorgos Spanodimitriou & Giovanni Ciampi & Luigi Tufano & Michelangelo Scorpio, 2023. "Flexible and Lightweight Solutions for Energy Improvement in Construction: A Literature Review," Energies, MDPI, vol. 16(18), pages 1-50, September.
    2. Federica Leone & Francesco Reda & Ala Hasan & Hassam ur Rehman & Fausto Carmelo Nigrelli & Francesco Nocera & Vincenzo Costanzo, 2022. "Lessons Learned from Positive Energy District (PED) Projects: Cataloguing and Analysing Technology Solutions in Different Geographical Areas in Europe," Energies, MDPI, vol. 16(1), pages 1-28, December.
    3. Federica Leone & Ala Hasan & Francesco Reda & Hassam ur Rehman & Fausto Carmelo Nigrelli & Francesco Nocera & Vincenzo Costanzo, 2023. "Supporting Cities towards Carbon Neutral Transition through Territorial Acupuncture," Sustainability, MDPI, vol. 15(5), pages 1-31, February.
    4. Jacopo Famiglietti & Marcello Aprile & Giulia Spirito & Mario Motta, 2023. "Net-Zero Climate Emissions Districts: Potentials and Constraints for Social Housing in Milan," Energies, MDPI, vol. 16(3), pages 1-31, February.
    5. Mario Garzón-Juan & Ana Nieto-Morote & Francisco Ruz-Vila, 2022. "Review of NZEB Criteria: Design of Life Containers in Operations Area," Energies, MDPI, vol. 15(2), pages 1-13, January.
    6. Maurizio Sibilla & Dhouha Touibi & Fonbeyin Henry Abanda, 2023. "Rethinking Abandoned Buildings as Positive Energy Buildings in a Former Industrial Site in Italy," Energies, MDPI, vol. 16(11), pages 1-18, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guelpa, E. & Capone, M. & Sciacovelli, A. & Vasset, N. & Baviere, R. & Verda, V., 2023. "Reduction of supply temperature in existing district heating: A review of strategies and implementations," Energy, Elsevier, vol. 262(PB).
    2. Marco Pellegrini & Augusto Bianchini, 2018. "The Innovative Concept of Cold District Heating Networks: A Literature Review," Energies, MDPI, vol. 11(1), pages 1-16, January.
    3. Brunt, Nicholas & Duquette, Jean & O'Brien, William, 2023. "Techno-economic and environmental performance of two state-of-the-art solar-assisted district energy system topologies," Energy, Elsevier, vol. 276(C).
    4. Hering, Dominik & Cansev, Mehmet Ege & Tamassia, Eugenio & Xhonneux, André & Müller, Dirk, 2021. "Temperature control of a low-temperature district heating network with Model Predictive Control and Mixed-Integer Quadratically Constrained Programming," Energy, Elsevier, vol. 224(C).
    5. Allegrini, Jonas & Orehounig, Kristina & Mavromatidis, Georgios & Ruesch, Florian & Dorer, Viktor & Evins, Ralph, 2015. "A review of modelling approaches and tools for the simulation of district-scale energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1391-1404.
    6. Dominković, D.F. & Bačeković, I. & Sveinbjörnsson, D. & Pedersen, A.S. & Krajačić, G., 2017. "On the way towards smart energy supply in cities: The impact of interconnecting geographically distributed district heating grids on the energy system," Energy, Elsevier, vol. 137(C), pages 941-960.
    7. Waibel, Christoph & Evins, Ralph & Carmeliet, Jan, 2019. "Co-simulation and optimization of building geometry and multi-energy systems: Interdependencies in energy supply, energy demand and solar potentials," Applied Energy, Elsevier, vol. 242(C), pages 1661-1682.
    8. Stadler, M. & Groissböck, M. & Cardoso, G. & Marnay, C., 2014. "Optimizing Distributed Energy Resources and building retrofits with the strategic DER-CAModel," Applied Energy, Elsevier, vol. 132(C), pages 557-567.
    9. Aste, Niccolò & Del Pero, Claudio & Leonforte, Fabrizio & Manfren, Massimiliano, 2013. "A simplified model for the estimation of energy production of PV systems," Energy, Elsevier, vol. 59(C), pages 503-512.
    10. Yazdanie, Mashael & Densing, Martin & Wokaun, Alexander, 2017. "Cost optimal urban energy systems planning in the context of national energy policies: A case study for the city of Basel," Energy Policy, Elsevier, vol. 110(C), pages 176-190.
    11. Jing, Mengke & Zhang, Shujie & Fu, Lisong & Cao, Guoquan & Wang, Rui, 2023. "Reducing heat losses from aging district heating pipes by using cured-in-place pipe liners," Energy, Elsevier, vol. 273(C).
    12. Grzegorz Kinelski & Jakub Stęchły & Piotr Bartkowiak, 2022. "Various Facets of Sustainable Smart City Management: Selected Examples from Polish Metropolitan Areas," Energies, MDPI, vol. 15(9), pages 1-23, April.
    13. Behzadi, Amirmohammad & Holmberg, Sture & Duwig, Christophe & Haghighat, Fariborz & Ooka, Ryozo & Sadrizadeh, Sasan, 2022. "Smart design and control of thermal energy storage in low-temperature heating and high-temperature cooling systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    14. Michiel Fremouw & Annamaria Bagaini & Paolo De Pascali, 2020. "Energy Potential Mapping: Open Data in Support of Urban Transition Planning," Energies, MDPI, vol. 13(5), pages 1-15, March.
    15. Volkova, Anna & Krupenski, Igor & Ledvanov, Aleksandr & Hlebnikov, Aleksandr & Lepiksaar, Kertu & Latõšov, Eduard & Mašatin, Vladislav, 2020. "Energy cascade connection of a low-temperature district heating network to the return line of a high-temperature district heating network," Energy, Elsevier, vol. 198(C).
    16. Matjaž Perpar & Zlatko Rek, 2021. "The Ability of a Soil Temperature Gradient-Based Methodology to Detect Leaks from Pipelines in Buried District Heating Channels," Energies, MDPI, vol. 14(18), pages 1-13, September.
    17. Selva Calixto & Marco Cozzini & Giampaolo Manzolini, 2021. "Modelling of an Existing Neutral Temperature District Heating Network: Detailed and Approximate Approaches," Energies, MDPI, vol. 14(2), pages 1-16, January.
    18. Jiang, X.S. & Jing, Z.X. & Li, Y.Z. & Wu, Q.H. & Tang, W.H., 2014. "Modelling and operation optimization of an integrated energy based direct district water-heating system," Energy, Elsevier, vol. 64(C), pages 375-388.
    19. Pere Ariza-Montobbio & Susana Herrero Olarte, 2021. "Socio-metabolic profiles of electricity consumption along the rural–urban continuum of Ecuador: Whose energy sovereignty?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7961-7995, May.
    20. Aste, Niccolò & Adhikari, R.S. & Manfren, Massimiliano, 2013. "Cost optimal analysis of heat pump technology adoption in residential reference buildings," Renewable Energy, Elsevier, vol. 60(C), pages 615-624.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6260-:d:648248. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.