IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i19p12666-d934046.html
   My bibliography  Save this article

Failure-Mechanism and Design Techniques of Offshore Wind Turbine Pile Foundation: Review and Research Directions

Author

Listed:
  • Sudip Basack

    (Elitte College of Engineering, Affiliated: MAKA University of Technology, Sodepur, Kolkata 700113, India)

  • Ghritartha Goswami

    (Department of Civil Engineering, North Eastern Regional Institute of Science and Technology, Nirjuli 791109, India)

  • Zi-Hang Dai

    (Institute of Geotechnical Engineering, College of Civil Engineering, Fuzhou University, Fujian 350025, China)

  • Parinita Baruah

    (Panchayat and Rural Development Department, Assam 781037, India)

Abstract

Wind energy is one of the most sustainable and renewable resources for power generation. Offshore wind turbines (OWTs) derive significant wind energy compared to onshore installations. One of the greatest challenges encountered by installing the OWTs is the adequate design of their foundation in relatively soft and compressible marine soil. In most cases, the OWTs are supported by a single pile, termed as ‘monopile foundation’. Apart from the usual loads from the superstructure, these piles are subjected to complex loading conditions under static and cyclic modes in the axial, lateral, and torsional directions due to the primary actions of the wave, wind, and current. To incorporate an appropriate design methodology, understanding the failure mechanisms of such piles is of the utmost necessity. This review paper aims to focus on the progressive development in the analysis of failure mechanisms and design practice relevant to the monopile foundations for OWTs by theoretical and experimental studies conducted globally. An extensive literature survey has been carried out to study the gradual progress on offshore pile-soil interaction, failure mechanisms, and design techniques of OWT supporting monopile foundations. Based on the studies, a brief overview of the various aspects of analysis and design has been carried out, and the relevant conclusions are drawn therefrom.

Suggested Citation

  • Sudip Basack & Ghritartha Goswami & Zi-Hang Dai & Parinita Baruah, 2022. "Failure-Mechanism and Design Techniques of Offshore Wind Turbine Pile Foundation: Review and Research Directions," Sustainability, MDPI, vol. 14(19), pages 1-20, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12666-:d:934046
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/19/12666/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/19/12666/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lee, Yeon-Seung & Choi, Byung-Lyul & Lee, Ji Hyun & Kim, Soo Young & Han, Soonhung, 2014. "Reliability-based design optimization of monopile transition piece for offshore wind turbine system," Renewable Energy, Elsevier, vol. 71(C), pages 729-741.
    2. Libo Chen & Xiaoyan Yang & Lichen Li & Wenbing Wu & M. Hesham El Naggar & Kuihua Wang & Jinyong Chen, 2020. "Numerical Analysis of the Deformation Performance of Monopile under Wave and Current Load," Energies, MDPI, vol. 13(23), pages 1-14, December.
    3. Wu, Xiaoni & Hu, Yu & Li, Ye & Yang, Jian & Duan, Lei & Wang, Tongguang & Adcock, Thomas & Jiang, Zhiyu & Gao, Zhen & Lin, Zhiliang & Borthwick, Alistair & Liao, Shijun, 2019. "Foundations of offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 379-393.
    4. Kim, Dong Hyawn & Lee, Sang Geun & Lee, Il Keun, 2014. "Seismic fragility analysis of 5 MW offshore wind turbine," Renewable Energy, Elsevier, vol. 65(C), pages 250-256.
    5. Negro, Vicente & López-Gutiérrez, José-Santos & Esteban, M. Dolores & Matutano, Clara, 2014. "Uncertainties in the design of support structures and foundations for offshore wind turbines," Renewable Energy, Elsevier, vol. 63(C), pages 125-132.
    6. Zihua Zhang & Junhua Li & Ping Zhuge, 2014. "Failure Analysis of Large-Scale Wind Power Structure under Simulated Typhoon," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-10, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Noor Amila Wan Abdullah Zawawi & Kamaluddeen Usman Danyaro & M. S. Liew & Lim Eu Shawn, 2023. "Environmental Sustainability and Efficiency of Offshore Platform Decommissioning: A Review," Sustainability, MDPI, vol. 15(17), pages 1-18, August.
    2. Dianfu Fu & Shuzhao Li & Hui Zhang & Yu Jiang & Run Liu & Chengfeng Li, 2023. "The Influence Depth of Pile Base Resistance in Sand-Layered Clay," Sustainability, MDPI, vol. 15(9), pages 1-14, April.
    3. Shan Liu & Zhenyu Liu, 2022. "Influence of Currents on the Breaking Wave Forces Acting on Monopiles over an Impermeable Slope," Sustainability, MDPI, vol. 15(1), pages 1-14, December.
    4. Sudip Basack & Shantanu Dutta & Dipasri Saha, 2022. "Installation and Performance Study of a Vertical-Axis Wind Turbine Prototype Model," Sustainability, MDPI, vol. 14(23), pages 1-29, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Yeon-Seung & González, José A. & Lee, Ji Hyun & Kim, Young Il & Park, K.C. & Han, Soonhung, 2016. "Structural topology optimization of the transition piece for an offshore wind turbine with jacket foundation," Renewable Energy, Elsevier, vol. 85(C), pages 1214-1225.
    2. Jian Zhang & Guo-Kai Yuan & Songye Zhu & Quan Gu & Shitang Ke & Jinghua Lin, 2022. "Seismic Analysis of 10 MW Offshore Wind Turbine with Large-Diameter Monopile in Consideration of Seabed Liquefaction," Energies, MDPI, vol. 15(7), pages 1-31, March.
    3. Wang, L. & Kolios, A. & Liu, X. & Venetsanos, D. & Rui, C., 2022. "Reliability of offshore wind turbine support structures: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    4. Zhiyu Jiang & Weifei Hu & Wenbin Dong & Zhen Gao & Zhengru Ren, 2017. "Structural Reliability Analysis of Wind Turbines: A Review," Energies, MDPI, vol. 10(12), pages 1-25, December.
    5. Wang, Yize & Liu, Zhenqing & Wang, Hao, 2022. "Proposal and layout optimization of a wind-wave hybrid energy system using GPU-accelerated differential evolution algorithm," Energy, Elsevier, vol. 239(PA).
    6. Wang, Xuefei & Yang, Xu & Zeng, Xiangwu, 2017. "Seismic centrifuge modelling of suction bucket foundation for offshore wind turbine," Renewable Energy, Elsevier, vol. 114(PB), pages 1013-1022.
    7. Georgios Malliotakis & Panagiotis Alevras & Charalampos Baniotopoulos, 2021. "Recent Advances in Vibration Control Methods for Wind Turbine Towers," Energies, MDPI, vol. 14(22), pages 1-37, November.
    8. Donghyeon Yoo & Jinhwan Park & Jaemin Moon & Changwan Kim, 2021. "Reliability-Based Design Optimization for Reducing the Performance Failure and Maximizing the Specific Energy of Lithium-Ion Batteries Considering Manufacturing Uncertainty of Porous Electrodes," Energies, MDPI, vol. 14(19), pages 1-15, September.
    9. Renjie Mo & Haigui Kang & Miao Li & Xuanlie Zhao, 2017. "Seismic Fragility Analysis of Monopile Offshore Wind Turbines under Different Operational Conditions," Energies, MDPI, vol. 10(7), pages 1-22, July.
    10. Hao Liu & Jiaxuan Li & Xiaoyan Yang & Libo Chen & Wenbing Wu & Minjie Wen & Mingjie Jiang & Changjiang Guo, 2022. "Lateral Dynamic Response of Offshore Pipe Piles Considering Effect of Superstructure," Energies, MDPI, vol. 15(18), pages 1-20, September.
    11. Seo, Junwon & Pokhrel, Jharna & Hu, Jong Wan, 2022. "Multi-Hazard Fragility Analysis of Offshore Wind Turbine Portfolios using Surrogate Models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    12. Luengo, Jorge & Negro, Vicente & García-Barba, Javier & López-Gutiérrez, José-Santos & Esteban, M. Dolores, 2019. "New detected uncertainties in the design of foundations for offshore Wind Turbines," Renewable Energy, Elsevier, vol. 131(C), pages 667-677.
    13. Leimeister, Mareike & Kolios, Athanasios, 2018. "A review of reliability-based methods for risk analysis and their application in the offshore wind industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1065-1076.
    14. Zhang, Lijun & Li, Ye & Xu, Wenhao & Gao, Zhiteng & Fang, Long & Li, Rongfu & Ding, Boyin & Zhao, Bin & Leng, Jun & He, Fenglan, 2022. "Systematic analysis of performance and cost of two floating offshore wind turbines with significant interactions," Applied Energy, Elsevier, vol. 321(C).
    15. Sun, Chuan & Chen, Yueyi & Cheng, Cheng, 2021. "Imputation of missing data from offshore wind farms using spatio-temporal correlation and feature correlation," Energy, Elsevier, vol. 229(C).
    16. Liu, Wenyi, 2016. "Design and kinetic analysis of wind turbine blade-hub-tower coupled system," Renewable Energy, Elsevier, vol. 94(C), pages 547-557.
    17. Yu Hu & Jian Yang & Charalampos Baniotopoulos, 2020. "Repowering Steel Tubular Wind Turbine Towers Enhancing them by Internal Stiffening Rings," Energies, MDPI, vol. 13(7), pages 1-23, March.
    18. Shan Liu & Zhenyu Liu, 2022. "Influence of Currents on the Breaking Wave Forces Acting on Monopiles over an Impermeable Slope," Sustainability, MDPI, vol. 15(1), pages 1-14, December.
    19. Leimeister, Mareike & Kolios, Athanasios, 2021. "Reliability-based design optimization of a spar-type floating offshore wind turbine support structure," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    20. Carswell, W. & Arwade, S.R. & DeGroot, D.J. & Myers, A.T., 2016. "Natural frequency degradation and permanent accumulated rotation for offshore wind turbine monopiles in clay," Renewable Energy, Elsevier, vol. 97(C), pages 319-330.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12666-:d:934046. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.