IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v319y2022ics030626192200633x.html
   My bibliography  Save this article

Temporal complementarity of marine renewables with wind and solar generation: Implications for GB system benefits

Author

Listed:
  • Pennock, Shona
  • Coles, Daniel
  • Angeloudis, Athanasios
  • Bhattacharya, Saptarshi
  • Jeffrey, Henry

Abstract

Wave and tidal energy have the potential to provide benefits to power systems with high proportions of stochastic renewable generation. This is particularly applicable in combination with wind and solar photovoltaics, as the offsetting of these renewable resources results in more reliable renewable generation. This study utilises ten metrics to quantify the temporal complementarity and supply-demand balancing requirements of the energy mix in Great Britain, to investigate the potential magnitude of these system benefits. Wave and tidal generation profiles are created using historical resource data and hydrodynamic models. The results show that the inclusion of wave and tidal generation creates a renewable energy mix which is more available under multiple conditions: throughout a year of operation; at times of peak demand; for multiple consecutive hourly time periods; and at times when wind and solar generation are not available. Three regional case studies also show that the inclusion of marine energy allows for improved regional supply-demand matching, reducing instances of energy shortage and excess and potentially relieving transmission congestion at particularly constrained locations within GB. Finally, the implications of these findings are discussed in terms of GB wholesale market operation, system balancing and system security.

Suggested Citation

  • Pennock, Shona & Coles, Daniel & Angeloudis, Athanasios & Bhattacharya, Saptarshi & Jeffrey, Henry, 2022. "Temporal complementarity of marine renewables with wind and solar generation: Implications for GB system benefits," Applied Energy, Elsevier, vol. 319(C).
  • Handle: RePEc:eee:appene:v:319:y:2022:i:c:s030626192200633x
    DOI: 10.1016/j.apenergy.2022.119276
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192200633X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119276?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fusco, Francesco & Nolan, Gary & Ringwood, John V., 2010. "Variability reduction through optimal combination of wind/wave resources – An Irish case study," Energy, Elsevier, vol. 35(1), pages 314-325.
    2. Todeschini, G. & Coles, D. & Lewis, M. & Popov, I. & Angeloudis, A. & Fairley, I. & Johnson, F. & Williams, A.J. & Robins, P. & Masters, I., 2022. "Medium-term variability of the UK's combined tidal energy resource for a net-zero carbon grid," Energy, Elsevier, vol. 238(PA).
    3. Daniel Coles & Athanasios Angeloudis & Zoe Goss & Jon Miles, 2021. "Tidal Stream vs. Wind Energy: The Value of Cyclic Power When Combined with Short-Term Storage in Hybrid Systems," Energies, MDPI, vol. 14(4), pages 1-17, February.
    4. Neill, Simon P. & Hemer, Mark & Robins, Peter E. & Griffiths, Alana & Furnish, Aaron & Angeloudis, Athanasios, 2021. "Tidal range resource of Australia," Renewable Energy, Elsevier, vol. 170(C), pages 683-692.
    5. Sinden, Graham, 2007. "Characteristics of the UK wind resource: Long-term patterns and relationship to electricity demand," Energy Policy, Elsevier, vol. 35(1), pages 112-127, January.
    6. Wu, Xiaoni & Hu, Yu & Li, Ye & Yang, Jian & Duan, Lei & Wang, Tongguang & Adcock, Thomas & Jiang, Zhiyu & Gao, Zhen & Lin, Zhiliang & Borthwick, Alistair & Liao, Shijun, 2019. "Foundations of offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 379-393.
    7. Clarke, J.A. & Connor, G. & Grant, A.D. & Johnstone, C.M., 2006. "Regulating the output characteristics of tidal current power stations to facilitate better base load matching over the lunar cycle," Renewable Energy, Elsevier, vol. 31(2), pages 173-180.
    8. Bryden, I.G & Macfarlane, D.M, 2000. "The utilisation of short term energy storage with tidal current generation systems," Energy, Elsevier, vol. 25(9), pages 893-907.
    9. Staffell, Iain & Pfenninger, Stefan, 2016. "Using bias-corrected reanalysis to simulate current and future wind power output," Energy, Elsevier, vol. 114(C), pages 1224-1239.
    10. Kalogeri, Christina & Galanis, George & Spyrou, Christos & Diamantis, Dimitris & Baladima, Foteini & Koukoula, Marika & Kallos, George, 2017. "Assessing the European offshore wind and wave energy resource for combined exploitation," Renewable Energy, Elsevier, vol. 101(C), pages 244-264.
    11. Bhattacharya, Saptarshi & Pennock, Shona & Robertson, Bryson & Hanif, Sarmad & Alam, Md Jan E. & Bhatnagar, Dhruv & Preziuso, Danielle & O’Neil, Rebecca, 2021. "Timing value of marine renewable energy resources for potential grid applications," Applied Energy, Elsevier, vol. 299(C).
    12. Angeloudis, Athanasios & Kramer, Stephan C. & Avdis, Alexandros & Piggott, Matthew D., 2018. "Optimising tidal range power plant operation," Applied Energy, Elsevier, vol. 212(C), pages 680-690.
    13. Buttler, Alexander & Dinkel, Felix & Franz, Simon & Spliethoff, Hartmut, 2016. "Variability of wind and solar power – An assessment of the current situation in the European Union based on the year 2014," Energy, Elsevier, vol. 106(C), pages 147-161.
    14. Monforti, F. & Huld, T. & Bódis, K. & Vitali, L. & D'Isidoro, M. & Lacal-Arántegui, R., 2014. "Assessing complementarity of wind and solar resources for energy production in Italy. A Monte Carlo approach," Renewable Energy, Elsevier, vol. 63(C), pages 576-586.
    15. Harcourt, Freddie & Angeloudis, Athanasios & Piggott, Matthew D., 2019. "Utilising the flexible generation potential of tidal range power plants to optimise economic value," Applied Energy, Elsevier, vol. 237(C), pages 873-884.
    16. Coker, Phil & Barlow, Janet & Cockerill, Tim & Shipworth, David, 2013. "Measuring significant variability characteristics: An assessment of three UK renewables," Renewable Energy, Elsevier, vol. 53(C), pages 111-120.
    17. Goss, Z.L. & Coles, D.S. & Kramer, S.C. & Piggott, M.D., 2021. "Efficient economic optimisation of large-scale tidal stream arrays," Applied Energy, Elsevier, vol. 295(C).
    18. Pfenninger, Stefan & Staffell, Iain, 2016. "Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data," Energy, Elsevier, vol. 114(C), pages 1251-1265.
    19. Joos, Michael & Staffell, Iain, 2018. "Short-term integration costs of variable renewable energy: Wind curtailment and balancing in Britain and Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 86(C), pages 45-65.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Coles, Daniel & Wray, Bevan & Stevens, Rob & Crawford, Scott & Pennock, Shona & Miles, Jon, 2023. "Impacts of tidal stream power on energy system security: An Isle of Wight case study," Applied Energy, Elsevier, vol. 334(C).
    2. Miguel Vicente & Alessandra Imperadore & Francisco X. Correia da Fonseca & Mário Vieira & José Cândido, 2023. "Enhancing Islanded Power Systems: Microgrid Modeling and Evaluating System Benefits of Ocean Renewable Energy Integration," Energies, MDPI, vol. 16(22), pages 1-16, November.
    3. Akdemir, Kerem Ziya & Robertson, Bryson & Oikonomou, Konstantinos & Kern, Jordan & Voisin, Nathalie & Hanif, Sarmad & Bhattacharya, Saptarshi, 2023. "Opportunities for wave energy in bulk power system operations," Applied Energy, Elsevier, vol. 352(C).
    4. Xiaotian Xia & Liye Xiao, 2023. "Probabilistic Power Flow Method for Hybrid AC/DC Grids Considering Correlation among Uncertainty Variables," Energies, MDPI, vol. 16(6), pages 1-19, March.
    5. Huseyin Balta & Zehra Yumurtaci, 2024. "Investigation and Optimization of Integrated Electricity Generation from Wind, Wave, and Solar Energy Sources," Energies, MDPI, vol. 17(3), pages 1-34, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexis Tantet & Marc Stéfanon & Philippe Drobinski & Jordi Badosa & Silvia Concettini & Anna Cretì & Claudia D’Ambrosio & Dimitri Thomopulos & Peter Tankov, 2019. "e 4 clim 1.0: The Energy for a Climate Integrated Model: Description and Application to Italy," Energies, MDPI, vol. 12(22), pages 1-37, November.
    2. Bhattacharya, Saptarshi & Pennock, Shona & Robertson, Bryson & Hanif, Sarmad & Alam, Md Jan E. & Bhatnagar, Dhruv & Preziuso, Danielle & O’Neil, Rebecca, 2021. "Timing value of marine renewable energy resources for potential grid applications," Applied Energy, Elsevier, vol. 299(C).
    3. Coles, Daniel & Wray, Bevan & Stevens, Rob & Crawford, Scott & Pennock, Shona & Miles, Jon, 2023. "Impacts of tidal stream power on energy system security: An Isle of Wight case study," Applied Energy, Elsevier, vol. 334(C).
    4. Fouz, D.M. & Carballo, R. & López, I. & González, X.P. & Iglesias, G., 2023. "A methodology for cost-effective analysis of hydrokinetic energy projects," Energy, Elsevier, vol. 282(C).
    5. Widén, Joakim & Carpman, Nicole & Castellucci, Valeria & Lingfors, David & Olauson, Jon & Remouit, Flore & Bergkvist, Mikael & Grabbe, Mårten & Waters, Rafael, 2015. "Variability assessment and forecasting of renewables: A review for solar, wind, wave and tidal resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 356-375.
    6. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    7. Martí Barclay, Vicky & Neill, Simon P. & Angeloudis, Athanasios, 2023. "Tidal range resource of the Patagonian shelf," Renewable Energy, Elsevier, vol. 209(C), pages 85-96.
    8. Ian M. Trotter & Torjus F. Bolkesj{o} & Eirik O. J{aa}stad & Jon Gustav Kirkerud, 2021. "Increased Electrification of Heating and Weather Risk in the Nordic Power System," Papers 2112.02893, arXiv.org.
    9. Lüth, Alexandra & Seifert, Paul E. & Egging-Bratseth, Ruud & Weibezahn, Jens, 2023. "How to connect energy islands: Trade-offs between hydrogen and electricity infrastructure," Applied Energy, Elsevier, vol. 341(C).
    10. Zhang, Hengxu & Cao, Yongji & Zhang, Yi & Terzija, Vladimir, 2018. "Quantitative synergy assessment of regional wind-solar energy resources based on MERRA reanalysis data," Applied Energy, Elsevier, vol. 216(C), pages 172-182.
    11. Daniel Coles & Athanasios Angeloudis & Zoe Goss & Jon Miles, 2021. "Tidal Stream vs. Wind Energy: The Value of Cyclic Power When Combined with Short-Term Storage in Hybrid Systems," Energies, MDPI, vol. 14(4), pages 1-17, February.
    12. Chris Matthew & Catalina Spataru, 2021. "Scottish Islands Interconnections: Modelling the Impacts on the UK Electricity Network of Geographically Diverse Wind and Marine Energy," Energies, MDPI, vol. 14(11), pages 1-21, May.
    13. Staffell, Iain & Pfenninger, Stefan, 2018. "The increasing impact of weather on electricity supply and demand," Energy, Elsevier, vol. 145(C), pages 65-78.
    14. Sambasivam, Balasubramanian & Xu, Yuan, 2023. "Reducing solar PV curtailment through demand-side management and economic dispatch in Karnataka, India," Energy Policy, Elsevier, vol. 172(C).
    15. Bowen Li & Sukanta Basu & Simon J. Watson & Herman W. J. Russchenberg, 2021. "A Brief Climatology of Dunkelflaute Events over and Surrounding the North and Baltic Sea Areas," Energies, MDPI, vol. 14(20), pages 1-14, October.
    16. Petkov, Ivalin & Gabrielli, Paolo, 2020. "Power-to-hydrogen as seasonal energy storage: an uncertainty analysis for optimal design of low-carbon multi-energy systems," Applied Energy, Elsevier, vol. 274(C).
    17. Pappas, Konstantinos & Mackie, Lucas & Zilakos, Ilias & van der Weijde, Adriaan Hendrik & Angeloudis, Athanasios, 2023. "Sensitivity of tidal range assessments to harmonic constituents and analysis timeframe," Renewable Energy, Elsevier, vol. 205(C), pages 125-141.
    18. Engeland, Kolbjørn & Borga, Marco & Creutin, Jean-Dominique & François, Baptiste & Ramos, Maria-Helena & Vidal, Jean-Philippe, 2017. "Space-time variability of climate variables and intermittent renewable electricity production – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 600-617.
    19. Patxi Garcia-Novo & Daniel Coles & Yusaku Kyozuka & Reiko Yamada & Haruka Moriguchi & Daisaku Sakaguchi, 2023. "Optimization of a Tidal–Wind–Solar System to Enhance Supply–Demand Balancing and Security: A Case Study of the Goto Islands, Japan," Sustainability, MDPI, vol. 15(12), pages 1-17, June.
    20. Madeleine McPherson & Theofilos Sotiropoulos-Michalakakos & LD Danny Harvey & Bryan Karney, 2017. "An Open-Access Web-Based Tool to Access Global, Hourly Wind and Solar PV Generation Time-Series Derived from the MERRA Reanalysis Dataset," Energies, MDPI, vol. 10(7), pages 1-14, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:319:y:2022:i:c:s030626192200633x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.