IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i6p2547-d1091086.html
   My bibliography  Save this article

Probabilistic Power Flow Method for Hybrid AC/DC Grids Considering Correlation among Uncertainty Variables

Author

Listed:
  • Xiaotian Xia

    (Institute of Electrical Engineering Chinese Academy of Sciences, Beijing 100190, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Liye Xiao

    (Institute of Electrical Engineering Chinese Academy of Sciences, Beijing 100190, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract

For a new power system using high-penetration renewable energy, the traditional deterministic power flow analysis method cannot accurately represent the stochastic characteristics of each state variable. The aggregation of renewable energy with different meteorological characteristics in the AC/DC interconnected grid significantly increases the difficulty of establishing a steady-state model. Therefore, this study proposes an improved Latin hypercube sampling algorithm using the van der Waerden scores and diffusion kernel density estimation to overcome the limitations of a priori assumption on probability distributions in uncertainty modeling and to retain the correlations among random variables in the sampling data. Interconnected grids are constructed with IEEE 9-bus and IEEE 14-bus and modified with IEEE 57-bus to describe common application cases of aggregated renewable energy. On this basis, the approximation errors of the proposed probabilistic power flow algorithm to the statistical characteristics of the power parameters are evaluated by setting the Nataf algorithm and the Latin hypercube algorithm using adaptive kernel density estimation as the control group. The results show that the improved Latin hypercube sampling algorithm can exhibit high computational accuracy and strong adaptability, both in severe operating scenarios with large amplitude of load fluctuations and with nonlinear power balance equations incorporating high dimensional random variables.

Suggested Citation

  • Xiaotian Xia & Liye Xiao, 2023. "Probabilistic Power Flow Method for Hybrid AC/DC Grids Considering Correlation among Uncertainty Variables," Energies, MDPI, vol. 16(6), pages 1-19, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2547-:d:1091086
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/6/2547/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/6/2547/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pennock, Shona & Coles, Daniel & Angeloudis, Athanasios & Bhattacharya, Saptarshi & Jeffrey, Henry, 2022. "Temporal complementarity of marine renewables with wind and solar generation: Implications for GB system benefits," Applied Energy, Elsevier, vol. 319(C).
    2. Drücke, Jaqueline & Borsche, Michael & James, Paul & Kaspar, Frank & Pfeifroth, Uwe & Ahrens, Bodo & Trentmann, Jörg, 2021. "Climatological analysis of solar and wind energy in Germany using the Grosswetterlagen classification," Renewable Energy, Elsevier, vol. 164(C), pages 1254-1266.
    3. Jani, Hardik K. & Kachhwaha, Surendra Singh & Nagababu, Garlapati & Das, Alok, 2022. "Temporal and spatial simultaneity assessment of wind-solar energy resources in India by statistical analysis and machine learning clustering approach," Energy, Elsevier, vol. 248(C).
    4. Yilin Xie & Ying Xu, 2022. "Transmission Expansion Planning Considering Wind Power and Load Uncertainties," Energies, MDPI, vol. 15(19), pages 1-18, September.
    5. Mei, Fei & Zhang, Jiatang & Lu, Jixiang & Lu, Jinjun & Jiang, Yuhan & Gu, Jiaqi & Yu, Kun & Gan, Lei, 2021. "Stochastic optimal operation model for a distributed integrated energy system based on multiple-scenario simulations," Energy, Elsevier, vol. 219(C).
    6. Hang Li & Zhe Zhang & Xianggen Yin, 2020. "A Novel Probabilistic Power Flow Algorithm Based on Principal Component Analysis and High-Dimensional Model Representation Techniques," Energies, MDPI, vol. 13(14), pages 1-14, July.
    7. Jithendranath, J. & Das, Debapriya & Guerrero, Josep M., 2021. "Probabilistic optimal power flow in islanded microgrids with load, wind and solar uncertainties including intermittent generation spatial correlation," Energy, Elsevier, vol. 222(C).
    8. Bo Long & Taek Won Jeong & Jong Deuk Lee & Yoo Cheol Jung & Kil To Chong, 2015. "Energy Management of a Hybrid AC–DC Micro-Grid Based on a Battery Testing System," Energies, MDPI, vol. 8(2), pages 1-14, February.
    9. Filip Mišurović & Saša Mujović, 2022. "Numerical Probabilistic Load Flow Analysis in Modern Power Systems with Intermittent Energy Sources," Energies, MDPI, vol. 15(6), pages 1-20, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mingshan Mo & Xinrui Xiong & Yunlong Wu & Zuyao Yu, 2023. "Deep-Reinforcement-Learning-Based Low-Carbon Economic Dispatch for Community-Integrated Energy System under Multiple Uncertainties," Energies, MDPI, vol. 16(22), pages 1-18, November.
    2. Li, Muyuan & Yao, Jinfeng & Shen, Yanbo & Yuan, Bin & Simmonds, Ian & Liu, Yunyun, 2023. "Impact of synoptic circulation patterns on renewable energy-related variables over China," Renewable Energy, Elsevier, vol. 215(C).
    3. Han, Fengwu & Zeng, Jianfeng & Lin, Junjie & Zhao, Yunlong & Gao, Chong, 2023. "A stochastic hierarchical optimization and revenue allocation approach for multi-regional integrated energy systems based on cooperative games," Applied Energy, Elsevier, vol. 350(C).
    4. António Couto & Paula Costa & Teresa Simões, 2021. "Identification of Extreme Wind Events Using a Weather Type Classification," Energies, MDPI, vol. 14(13), pages 1-16, July.
    5. Murilo Eduardo Casteroba Bento, 2023. "Wide-Area Measurement-Based Two-Level Control Design to Tolerate Permanent Communication Failures," Energies, MDPI, vol. 16(15), pages 1-15, July.
    6. Li-Peng Shao & Jia-Jia Chen & Lu-Wen Pan & Zi-Juan Yang, 2022. "A Credibility Theory-Based Robust Optimization Model to Hedge Price Uncertainty of DSO with Multiple Transactions," Mathematics, MDPI, vol. 10(23), pages 1-20, November.
    7. Quan, Hao & Lv, Junjie & Guo, Jian & Zhang, Wenjie, 2022. "Investigation of spatial correlation on optimal power flow with high penetration of wind power: A comparative study," Applied Energy, Elsevier, vol. 316(C).
    8. Miguel Vicente & Alessandra Imperadore & Francisco X. Correia da Fonseca & Mário Vieira & José Cândido, 2023. "Enhancing Islanded Power Systems: Microgrid Modeling and Evaluating System Benefits of Ocean Renewable Energy Integration," Energies, MDPI, vol. 16(22), pages 1-16, November.
    9. Akdemir, Kerem Ziya & Robertson, Bryson & Oikonomou, Konstantinos & Kern, Jordan & Voisin, Nathalie & Hanif, Sarmad & Bhattacharya, Saptarshi, 2023. "Opportunities for wave energy in bulk power system operations," Applied Energy, Elsevier, vol. 352(C).
    10. Wang, Jiangjiang & Huo, Shuojie & Yan, Rujing & Cui, Zhiheng, 2022. "Leveraging heat accumulation of district heating network to improve performances of integrated energy system under source-load uncertainties," Energy, Elsevier, vol. 252(C).
    11. Li, Yahui & Sun, Yuanyuan & Wang, Qingyan & Sun, Kaiqi & Li, Ke-Jun & Zhang, Yan, 2023. "Probabilistic harmonic forecasting of the distribution system considering time-varying uncertainties of the distributed energy resources and electrical loads," Applied Energy, Elsevier, vol. 329(C).
    12. Mohamed A. M. Shaheen & Hany M. Hasanien & Said F. Mekhamer & Mohammed H. Qais & Saad Alghuwainem & Zia Ullah & Marcos Tostado-Véliz & Rania A. Turky & Francisco Jurado & Mohamed R. Elkadeem, 2022. "Probabilistic Optimal Power Flow Solution Using a Novel Hybrid Metaheuristic and Machine Learning Algorithm," Mathematics, MDPI, vol. 10(17), pages 1-23, August.
    13. Wu, Min & Xu, Jiazhu & Zeng, Linjun & Li, Chang & Liu, Yuxing & Yi, Yuqin & Wen, Ming & Jiang, Zhuohan, 2022. "Two-stage robust optimization model for park integrated energy system based on dynamic programming," Applied Energy, Elsevier, vol. 308(C).
    14. Dhaval Dalal & Muhammad Bilal & Hritik Shah & Anwarul Islam Sifat & Anamitra Pal & Philip Augustin, 2023. "Cross-Correlated Scenario Generation for Renewable-Rich Power Systems Using Implicit Generative Models," Energies, MDPI, vol. 16(4), pages 1-20, February.
    15. O., Yugeswar Reddy & J., Jithendranath & Chakraborty, Ajoy Kumar & Guerrero, Josep M., 2022. "Stochastic optimal power flow in islanded DC microgrids with correlated load and solar PV uncertainties," Applied Energy, Elsevier, vol. 307(C).
    16. Yan, Rujing & Wang, Jiangjiang & Huo, Shuojie & Qin, Yanbo & Zhang, Jing & Tang, Saiqiu & Wang, Yuwei & Liu, Yan & Zhou, Lin, 2023. "Flexibility improvement and stochastic multi-scenario hybrid optimization for an integrated energy system with high-proportion renewable energy," Energy, Elsevier, vol. 263(PB).
    17. Gupta, S. & Maulik, A. & Das, D. & Singh, A., 2022. "Coordinated stochastic optimal energy management of grid-connected microgrids considering demand response, plug-in hybrid electric vehicles, and smart transformers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    18. Chen, Yuxin & Jiang, Yuewen, 2023. "Interval energy flow calculation method for electricity-heat-hydrogen integrated energy system considering the correlation between variables," Energy, Elsevier, vol. 263(PB).
    19. Makhloufi, Saida & Khennas, Smail & Bouchaib, Sami & Arab, Amar Hadj, 2022. "Multi-objective cuckoo search algorithm for optimized pathways for 75 % renewable electricity mix by 2050 in Algeria," Renewable Energy, Elsevier, vol. 185(C), pages 1410-1424.
    20. Maen Z. Kreishan & Ahmed F. Zobaa, 2021. "Optimal Allocation and Operation of Droop-Controlled Islanded Microgrids: A Review," Energies, MDPI, vol. 14(15), pages 1-45, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2547-:d:1091086. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.