IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i11p2784-d365763.html
   My bibliography  Save this article

Dynamic Response of Articulated Offshore Wind Turbines under Different Water Depths

Author

Listed:
  • Pei Zhang

    (State Key Laboratory of Hydraulic Engineering Simulation and Safety, School of Civil Engineering, Tianjin University, Tianjin 300350, China)

  • Shugeng Yang

    (State Key Laboratory of Hydraulic Engineering Simulation and Safety, School of Civil Engineering, Tianjin University, Tianjin 300350, China
    Tianjin Key Laboratory of Port and Ocean Engineering, School of Civil Engineering, Tianjin University, Tianjin 300350, China)

  • Yan Li

    (State Key Laboratory of Hydraulic Engineering Simulation and Safety, School of Civil Engineering, Tianjin University, Tianjin 300350, China
    Tianjin Key Laboratory of Port and Ocean Engineering, School of Civil Engineering, Tianjin University, Tianjin 300350, China)

  • Jiayang Gu

    (Institute of Marine Equipment Research, Jiangsu University of Science and Technology, Zhenjiang 212003, China)

  • Zhiqiang Hu

    (School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK)

  • Ruoyu Zhang

    (State Key Laboratory of Hydraulic Engineering Simulation and Safety, School of Civil Engineering, Tianjin University, Tianjin 300350, China
    Tianjin Key Laboratory of Port and Ocean Engineering, School of Civil Engineering, Tianjin University, Tianjin 300350, China)

  • Yougang Tang

    (State Key Laboratory of Hydraulic Engineering Simulation and Safety, School of Civil Engineering, Tianjin University, Tianjin 300350, China
    Tianjin Key Laboratory of Port and Ocean Engineering, School of Civil Engineering, Tianjin University, Tianjin 300350, China)

Abstract

Focusing on the transitional depth offshore area from 50 m to 75 m, types of articulated foundations are proposed for supporting the NREL 5 MW offshore wind turbine. To investigate the dynamic behaviors under various water depths, three articulated foundations were adopted and numerical simulations were conducted in the time domain. An in-house code was chosen to simulate the dynamic response of the articulated offshore wind turbine. The aerodynamic load on rotating blades and the wind pressure load on tower are calculated based on the blade element momentum theory and the empirical formula, respectively. The hydrodynamic load is simulated by 3D potential flow theory. The motions of foundation, the aerodynamic performance of the wind turbine, and the loads on the articulated joint are documented and compared in different cases. According to the simulation, all three articulated offshore wind turbines show great dynamic performance and totally meet the requirement of power generation under the rated operational condition. Moreover, the comparison is based on time histories and spectra among these responses. The result shows that dynamic responses of the shallower one oscillate more severely compared to the other designs.

Suggested Citation

  • Pei Zhang & Shugeng Yang & Yan Li & Jiayang Gu & Zhiqiang Hu & Ruoyu Zhang & Yougang Tang, 2020. "Dynamic Response of Articulated Offshore Wind Turbines under Different Water Depths," Energies, MDPI, vol. 13(11), pages 1-20, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2784-:d:365763
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/11/2784/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/11/2784/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ulazia, Alain & Sáenz, Jon & Ibarra-Berastegi, Gabriel & González-Rojí, Santos J. & Carreno-Madinabeitia, Sheila, 2019. "Global estimations of wind energy potential considering seasonal air density changes," Energy, Elsevier, vol. 187(C).
    2. Li, Yan & Zhu, Qiang & Liu, Liqin & Tang, Yougang, 2018. "Transient response of a SPAR-type floating offshore wind turbine with fractured mooring lines," Renewable Energy, Elsevier, vol. 122(C), pages 576-588.
    3. Conghuan Le & Yane Li & Hongyan Ding, 2019. "Study on the Coupled Dynamic Responses of a Submerged Floating Wind Turbine under Different Mooring Conditions," Energies, MDPI, vol. 12(3), pages 1-21, January.
    4. Chen, Jiahao & Hu, Zhiqiang & Liu, Geliang & Wan, Decheng, 2019. "Coupled aero-hydro-servo-elastic methods for floating wind turbines," Renewable Energy, Elsevier, vol. 130(C), pages 139-153.
    5. Jang, Ha-Kun & Park, Sewan & Kim, Moo-Hyun & Kim, Kyong-Hwan & Hong, Keyyong, 2019. "Effects of heave plates on the global performance of a multi-unit floating offshore wind turbine," Renewable Energy, Elsevier, vol. 134(C), pages 526-537.
    6. Lerch, Markus & De-Prada-Gil, Mikel & Molins, Climent, 2019. "The influence of different wind and wave conditions on the energy yield and downtime of a Spar-buoy floating wind turbine," Renewable Energy, Elsevier, vol. 136(C), pages 1-14.
    7. Salehyar, Sara & Li, Yan & Zhu, Qiang, 2017. "Fully-coupled time-domain simulations of the response of a floating wind turbine to non-periodic disturbances," Renewable Energy, Elsevier, vol. 111(C), pages 214-226.
    8. Wu, Xiaoni & Hu, Yu & Li, Ye & Yang, Jian & Duan, Lei & Wang, Tongguang & Adcock, Thomas & Jiang, Zhiyu & Gao, Zhen & Lin, Zhiliang & Borthwick, Alistair & Liao, Shijun, 2019. "Foundations of offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 379-393.
    9. Zi Lin & Xiaolei Liu, 2020. "Assessment of Wind Turbine Aero-Hydro-Servo-Elastic Modelling on the Effects of Mooring Line Tension via Deep Learning," Energies, MDPI, vol. 13(9), pages 1-21, May.
    10. Alain Ulazia & Gabriel Ibarra-Berastegi & Jon Sáenz & Sheila Carreno-Madinabeitia & Santos J. González-Rojí, 2019. "Seasonal Correction of Offshore Wind Energy Potential due to Air Density: Case of the Iberian Peninsula," Sustainability, MDPI, vol. 11(13), pages 1-22, July.
    11. Stock-Williams, Clym & Swamy, Siddharth Krishna, 2019. "Automated daily maintenance planning for offshore wind farms," Renewable Energy, Elsevier, vol. 133(C), pages 1393-1403.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Yushi & Wu, Chunbing & Ji, Xiaodong & Zhang, Mulan & Li, Yiran & He, Jianjun & Qin, Zhiheng, 2022. "Estimation of the influences of spatiotemporal variations in air density on wind energy assessment in China based on deep neural network," Energy, Elsevier, vol. 239(PC).
    2. Alain Ulazia & Gabriel Ibarra-Berastegi, 2020. "Problem-Based Learning in University Studies on Renewable Energies: Case of a Laboratory Windpump," Sustainability, MDPI, vol. 12(6), pages 1-15, March.
    3. Baolong Liu & Jianxing Yu, 2022. "Dynamic Response of SPAR-Type Floating Offshore Wind Turbine under Wave Group Scenarios," Energies, MDPI, vol. 15(13), pages 1-18, July.
    4. Zhaolin Jia & Han Wu & Hao Chen & Wei Li & Xinyi Li & Jijian Lian & Shuaiqi He & Xiaoxu Zhang & Qixiang Zhao, 2022. "Hydrodynamic Response and Tension Leg Failure Performance Analysis of Floating Offshore Wind Turbine with Inclined Tension Legs," Energies, MDPI, vol. 15(22), pages 1-16, November.
    5. Yang, Yang & Bashir, Musa & Michailides, Constantine & Li, Chun & Wang, Jin, 2020. "Development and application of an aero-hydro-servo-elastic coupling framework for analysis of floating offshore wind turbines," Renewable Energy, Elsevier, vol. 161(C), pages 606-625.
    6. Zhou, Binzhen & Hu, Jianjian & Jin, Peng & Sun, Ke & Li, Ye & Ning, Dezhi, 2023. "Power performance and motion response of a floating wind platform and multiple heaving wave energy converters hybrid system," Energy, Elsevier, vol. 265(C).
    7. Zi Lin & Xiaolei Liu, 2020. "Assessment of Wind Turbine Aero-Hydro-Servo-Elastic Modelling on the Effects of Mooring Line Tension via Deep Learning," Energies, MDPI, vol. 13(9), pages 1-21, May.
    8. Yan Li & Liqin Liu & Ying Guo & Wanru Deng, 2022. "Numerical Prediction on the Dynamic Response of a Helical Floating Vertical Axis Wind Turbine Based on an Aero-Hydro-Mooring-Control Coupled Model," Energies, MDPI, vol. 15(10), pages 1-21, May.
    9. Carreno-Madinabeitia, Sheila & Ibarra-Berastegi, Gabriel & Sáenz, Jon & Ulazia, Alain, 2021. "Long-term changes in offshore wind power density and wind turbine capacity factor in the Iberian Peninsula (1900–2010)," Energy, Elsevier, vol. 226(C).
    10. Maddi Aizpurua-Etxezarreta & Sheila Carreno-Madinabeitia & Alain Ulazia & Jon Sáenz & Aitor Saenz-Aguirre, 2022. "Long-Term Freezing Temperatures Frequency Change Effect on Wind Energy Gain (Eurasia and North America, 1950–2019)," Sustainability, MDPI, vol. 14(9), pages 1-15, May.
    11. Subbulakshmi, A. & Verma, Mohit & Keerthana, M. & Sasmal, Saptarshi & Harikrishna, P. & Kapuria, Santosh, 2022. "Recent advances in experimental and numerical methods for dynamic analysis of floating offshore wind turbines — An integrated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    12. Ren, Zhengru & Verma, Amrit Shankar & Li, Ye & Teuwen, Julie J.E. & Jiang, Zhiyu, 2021. "Offshore wind turbine operations and maintenance: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    13. Liu, Xiaolei & Lin, Zi & Feng, Ziming, 2021. "Short-term offshore wind speed forecast by seasonal ARIMA - A comparison against GRU and LSTM," Energy, Elsevier, vol. 227(C).
    14. Alain Ulazia & Ander Nafarrate & Gabriel Ibarra-Berastegi & Jon Sáenz & Sheila Carreno-Madinabeitia, 2019. "The Consequences of Air Density Variations over Northeastern Scotland for Offshore Wind Energy Potential," Energies, MDPI, vol. 12(13), pages 1-18, July.
    15. Mehrjoo, Mehrdad & Jafari Jozani, Mohammad & Pawlak, Miroslaw, 2021. "Toward hybrid approaches for wind turbine power curve modeling with balanced loss functions and local weighting schemes," Energy, Elsevier, vol. 218(C).
    16. Truong, Hoai Vu Anh & Dang, Tri Dung & Vo, Cong Phat & Ahn, Kyoung Kwan, 2022. "Active control strategies for system enhancement and load mitigation of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    17. Galih Bangga, 2022. "Progress and Outlook in Wind Energy Research," Energies, MDPI, vol. 15(18), pages 1-5, September.
    18. Zhang, Lijun & Li, Ye & Xu, Wenhao & Gao, Zhiteng & Fang, Long & Li, Rongfu & Ding, Boyin & Zhao, Bin & Leng, Jun & He, Fenglan, 2022. "Systematic analysis of performance and cost of two floating offshore wind turbines with significant interactions," Applied Energy, Elsevier, vol. 321(C).
    19. Lin, Zi & Liu, Xiaolei & Lao, Liyun & Liu, Hengxu, 2020. "Prediction of two-phase flow patterns in upward inclined pipes via deep learning," Energy, Elsevier, vol. 210(C).
    20. Zhang, Shuangyi & Li, Xichen, 2021. "Future projections of offshore wind energy resources in China using CMIP6 simulations and a deep learning-based downscaling method," Energy, Elsevier, vol. 217(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2784-:d:365763. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.