IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i12p5655-d1682792.html
   My bibliography  Save this article

Dynamic Analysis of a Spar-Type Floating Offshore Wind Turbine Under Extreme Operation Gust

Author

Listed:
  • Yizhan Li

    (Department of Naval Architecture and Ocean Engineering, College of Navigation and Naval Architecture Engineering, Dalian Ocean University, Dalian 116023, China)

  • Wei Yin

    (China Ship Design & Research Center Co., Ltd., Qingdao 266520, China)

  • Shudong Leng

    (China Ship Design & Research Center Co., Ltd., Qingdao 266520, China)

  • Yanpeng Meng

    (CSSC (TIANJIN) SHIPBUILDING Co., Ltd., Tianjin 300452, China)

  • Yanru Zhang

    (Department of Naval Architecture and Ocean Engineering, College of Navigation and Naval Architecture Engineering, Dalian Ocean University, Dalian 116023, China)

Abstract

Extreme sea conditions, particularly extreme operation gusts (EOGs), present a substantial threat to structures like floating offshore wind turbines (FOWTs) due to the intense loads they exert. In this work, we simulate EOGs and analyze the dynamic response of floating wind turbines. We conduct separate analyses of the operational state under the rated wind speed, the operational state, and the shutdown state under the EOG, focusing on the motion of the floating platform and the tension of the mooring lines of the FOWT. The results of our study indicate that under the influence of EOGs, the response of the FOWT changes significantly, especially in terms of the range of response variations. After the passage of an EOG, there are notable differences in the average response of each component of the wind turbine under the shutdown strategy. When compared to normal operation during EOGs, the shutdown strategy enables the FOWT to reach the extreme response value more rapidly. Subsequently, it also recovers response stability more quickly. However, a FOWT operating under normal conditions exhibits a larger extreme response value. Regarding pitch motion, the maximum response can reach 10.52 deg, which may lead to overall instability of the structure. Implementing a stall strategy can effectively reduce the swing amplitude to 6.09 deg. Under the action of EOGs, the maximum mooring tension reaches 1376.60 kN, yet no failure or fracture occurs in the mooring system.

Suggested Citation

  • Yizhan Li & Wei Yin & Shudong Leng & Yanpeng Meng & Yanru Zhang, 2025. "Dynamic Analysis of a Spar-Type Floating Offshore Wind Turbine Under Extreme Operation Gust," Sustainability, MDPI, vol. 17(12), pages 1-23, June.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:12:p:5655-:d:1682792
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/12/5655/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/12/5655/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Salehyar, Sara & Li, Yan & Zhu, Qiang, 2017. "Fully-coupled time-domain simulations of the response of a floating wind turbine to non-periodic disturbances," Renewable Energy, Elsevier, vol. 111(C), pages 214-226.
    2. Li, Yan & Zhu, Qiang & Liu, Liqin & Tang, Yougang, 2018. "Transient response of a SPAR-type floating offshore wind turbine with fractured mooring lines," Renewable Energy, Elsevier, vol. 122(C), pages 576-588.
    3. Su, Ouming & Li, Yan & Li, Guoyan & Cui, Yiwen & Li, Haoran & Wang, Bin & Meng, Hang & Li, Yaolong & Liang, Jinfeng, 2024. "Nonlinear harmonic resonant behaviors and bifurcation in a Two Degree-of-Freedom Duffing oscillator coupled system of Tension Leg Platform type Floating Offshore Wind Turbine," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
    4. Haitao Hou & Wei Lu & Bing Liu & Zeina Hassanein & Hamid Mahmood & Samia Khalid, 2023. "Exploring the Role of Fossil Fuels and Renewable Energy in Determining Environmental Sustainability: Evidence from OECD Countries," Sustainability, MDPI, vol. 15(3), pages 1-13, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baolong Liu & Jianxing Yu, 2022. "Dynamic Response of SPAR-Type Floating Offshore Wind Turbine under Wave Group Scenarios," Energies, MDPI, vol. 15(13), pages 1-18, July.
    2. Pei Zhang & Shugeng Yang & Yan Li & Jiayang Gu & Zhiqiang Hu & Ruoyu Zhang & Yougang Tang, 2020. "Dynamic Response of Articulated Offshore Wind Turbines under Different Water Depths," Energies, MDPI, vol. 13(11), pages 1-20, June.
    3. Yan Li & Liqin Liu & Ying Guo & Wanru Deng, 2022. "Numerical Prediction on the Dynamic Response of a Helical Floating Vertical Axis Wind Turbine Based on an Aero-Hydro-Mooring-Control Coupled Model," Energies, MDPI, vol. 15(10), pages 1-21, May.
    4. Zeng, Xinmeng & Shao, Yanlin & Feng, Xingya & Xu, Kun & Jin, Ruijia & Li, Huajun, 2024. "Nonlinear hydrodynamics of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    5. Abdol Aziz Shahraki & Hossein Mollashahi, 2025. "House building techniques for achieving sustainable development goals," Natural Resources Forum, Blackwell Publishing, vol. 49(2), pages 1859-1879, May.
    6. Cui, Lin & Wu, Haitao & Li, Meng & Lu, Mengyao & Liu, Weixing & Zhang, Zhiyang, 2024. "Effects of mooring failure on the dynamic behavior of the power capture platforms," Energy, Elsevier, vol. 313(C).
    7. Baolong Liu & Jianxing Yu, 2022. "Effect of Mooring Parameters on Dynamic Responses of a Semi-Submersible Floating Offshore Wind Turbine," Sustainability, MDPI, vol. 14(21), pages 1-18, October.
    8. Magdalena Kowalska & Ewa Chomać-Pierzecka, 2025. "Sustainable Development Through the Lens of Climate Change: A Diagnosis of Attitudes in Southeastern Rural Poland," Sustainability, MDPI, vol. 17(12), pages 1-21, June.
    9. Zhaolin Jia & Han Wu & Hao Chen & Wei Li & Xinyi Li & Jijian Lian & Shuaiqi He & Xiaoxu Zhang & Qixiang Zhao, 2022. "Hydrodynamic Response and Tension Leg Failure Performance Analysis of Floating Offshore Wind Turbine with Inclined Tension Legs," Energies, MDPI, vol. 15(22), pages 1-16, November.
    10. Su, Ouming & Li, Yan & Li, Guoyan & Cui, Yiwen & Li, Haoran & Wang, Bin & Meng, Hang & Li, Yaolong & Liang, Jinfeng, 2024. "Nonlinear harmonic resonant behaviors and bifurcation in a Two Degree-of-Freedom Duffing oscillator coupled system of Tension Leg Platform type Floating Offshore Wind Turbine," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
    11. Wenli Yang & Langang Feng & Zuogong Wang & Xiangbo Fan, 2023. "Carbon Emissions and National Sustainable Development Goals Coupling Coordination Degree Study from a Global Perspective: Characteristics, Heterogeneity, and Spatial Effects," Sustainability, MDPI, vol. 15(11), pages 1-23, June.
    12. Shoeib Faraji Abdolmaleki & Danial Esfandiary Abdolmaleki & Pastora M. Bello Bugallo, 2023. "Finding Sustainable Countries in Renewable Energy Sector: A Case Study for an EU Energy System," Sustainability, MDPI, vol. 15(13), pages 1-22, June.
    13. Awais Ahmed Brohi & Yoshihisa Suzuki, 2023. "Does green innovation moderate between FDI and environmental sustainability? Empirical evidence from South Asia," PLOS ONE, Public Library of Science, vol. 18(11), pages 1-15, November.
    14. Ren, Yajun & Shi, Wei & Venugopal, Vengatesan & Zhang, Lixian & Li, Xin, 2024. "Experimental study of tendon failure analysis for a TLP floating offshore wind turbine," Applied Energy, Elsevier, vol. 358(C).
    15. Zi Lin & Xiaolei Liu, 2020. "Assessment of Wind Turbine Aero-Hydro-Servo-Elastic Modelling on the Effects of Mooring Line Tension via Deep Learning," Energies, MDPI, vol. 13(9), pages 1-21, May.
    16. Raihan, Asif & Mainul Bari, A.B.M., 2024. "Energy-economy-environment nexus in China: The role of renewable energies toward carbon neutrality," Innovation and Green Development, Elsevier, vol. 3(3).
    17. Li, Yan & Zhu, Qiang & Liu, Liqin & Tang, Yougang, 2018. "Transient response of a SPAR-type floating offshore wind turbine with fractured mooring lines," Renewable Energy, Elsevier, vol. 122(C), pages 576-588.
    18. Dianfei Luan & Hamid Mahmood & Samia Khalid & Bashir Ahmad Fida, 2025. "Asymmetric Impact of Green Innovation and Taxation on Environmental Sustainability in Developing Countries," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 16(1), pages 5216-5237, March.
    19. Miao, Yang & Tian, Yule & Cao, Jian & Yu, Xinqi, 2025. "Green finance and privatization of green projects in the fossil fuels industry," Resources Policy, Elsevier, vol. 103(C).
    20. Yang, Yang & Bashir, Musa & Michailides, Constantine & Mei, Xuan & Wang, Jin & Li, Chun, 2021. "Coupled analysis of a 10 MW multi-body floating offshore wind turbine subjected to tendon failures," Renewable Energy, Elsevier, vol. 176(C), pages 89-105.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:12:p:5655-:d:1682792. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.