IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v224y2024ics0960148124001848.html
   My bibliography  Save this article

Investigation of barge-type FOWT in the context of concurrent and cascading failures within the mooring systems

Author

Listed:
  • Jia, Wenzhe
  • Liu, Qingsong
  • lglesias, Gregorio
  • Miao, Weipao
  • Yue, Minnan
  • Yang, Yang
  • Li, Chun

Abstract

The design requirements for offshore engineering stipulate that floating structures should maintain their overall performance even in the event of a single mooring line failure. However, it is crucial to ensure that the platform does not drift or capsize in the case of two mooring line failures. Therefore, the investigation into the dynamic response of wind turbines after mooring line failures is of great significance. In this study, the aerodynamic-structural simulation capability of FAST was coupled with the hydrodynamic analysis software AQWA by modifying the dynamic link library. The dynamic response of a Barge-type floating offshore wind turbine (FOWT) and the variations in mooring line tensions were computed under different sea conditions after the successive failures of two mooring lines with varying time intervals. The findings reveal that in rated sea conditions, there is a significant increase in surge motion, reaching a maximum value 2.08 times that of the original, following the failure of two mooring lines. The tension in mooring line #3 reaches 1.57 times the pre-failure value. In extreme sea conditions, the simultaneous failure of two mooring lines at the same corner triggers a cascading failure phenomenon within the mooring system, and a shorter interval between failures amplifies the dynamic response of the platform. Therefore, it is not advisable to deploy the Barge platform in harsh environmental conditions.

Suggested Citation

  • Jia, Wenzhe & Liu, Qingsong & lglesias, Gregorio & Miao, Weipao & Yue, Minnan & Yang, Yang & Li, Chun, 2024. "Investigation of barge-type FOWT in the context of concurrent and cascading failures within the mooring systems," Renewable Energy, Elsevier, vol. 224(C).
  • Handle: RePEc:eee:renene:v:224:y:2024:i:c:s0960148124001848
    DOI: 10.1016/j.renene.2024.120119
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124001848
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120119?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:224:y:2024:i:c:s0960148124001848. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.