IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics0360544224035394.html
   My bibliography  Save this article

Effects of mooring failure on the dynamic behavior of the power capture platforms

Author

Listed:
  • Cui, Lin
  • Wu, Haitao
  • Li, Meng
  • Lu, Mengyao
  • Liu, Weixing
  • Zhang, Zhiyang

Abstract

In recent years, for enhancing the ocean energy capture, it has been prevail to combine multiple wave energy converters (WECs) with the floating platforms. A power capture platform concepts is proposed in this paper based on the point-absorber WEC array and the SPIC semi-submersible platform. The present study conducts the time-domain dynamic analysis on the performance of the power capture platforms with mooring failure. After the validation of the numerical models, ANSYS-AQWA is employed to investigate the platform motion response, the remaining mooring lines' tension response, and the WEC array's power output. The results show that the platform motion and the remaining mooring lines' tension appear significant transient overshoots after mooring failure. The mean motion response of the platform increases because of the reduction of mooring stiffness. Meanwhile, the energy distribution of the platform slow-drift and roll motions at the low-frequency region increases as well. Moreover, the mooring line tension adjacent to the failed mooring line increases significantly, while that of other mooring lines decreases. Notably, mooring failure has slight effects on the WEC array's energy conversion performance, and the total absorbed power among Model 2 is more than that among Model 1. These important findings provide some insights into the design of power capture platforms. Moreover, to ensure the floating system stable and reliable, the effects of mooring failure and the resulting changes should be evaluated in advance.

Suggested Citation

  • Cui, Lin & Wu, Haitao & Li, Meng & Lu, Mengyao & Liu, Weixing & Zhang, Zhiyang, 2024. "Effects of mooring failure on the dynamic behavior of the power capture platforms," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224035394
    DOI: 10.1016/j.energy.2024.133761
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224035394
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133761?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Yan & Zhu, Qiang & Liu, Liqin & Tang, Yougang, 2018. "Transient response of a SPAR-type floating offshore wind turbine with fractured mooring lines," Renewable Energy, Elsevier, vol. 122(C), pages 576-588.
    2. Kamarlouei, M. & Gaspar, J.F. & Calvario, M. & Hallak, T.S. & Mendes, M.J.G.C. & Thiebaut, F. & Guedes Soares, C., 2020. "Experimental analysis of wave energy converters concentrically attached on a floating offshore platform," Renewable Energy, Elsevier, vol. 152(C), pages 1171-1185.
    3. Wu, Haitao & Zhu, Fengshen & Yuan, Zhiming, 2024. "Effects of the WEC shape on the performance of a novel hybrid WEC-FOWT system," Energy, Elsevier, vol. 288(C).
    4. Ren, Yajun & Shi, Wei & Venugopal, Vengatesan & Zhang, Lixian & Li, Xin, 2024. "Experimental study of tendon failure analysis for a TLP floating offshore wind turbine," Applied Energy, Elsevier, vol. 358(C).
    5. Hu, Jianjian & Zhou, Binzhen & Vogel, Christopher & Liu, Pin & Willden, Richard & Sun, Ke & Zang, Jun & Geng, Jing & Jin, Peng & Cui, Lin & Jiang, Bo & Collu, Maurizio, 2020. "Optimal design and performance analysis of a hybrid system combing a floating wind platform and wave energy converters," Applied Energy, Elsevier, vol. 269(C).
    6. Bae, Y.H. & Kim, M.H. & Kim, H.C., 2017. "Performance changes of a floating offshore wind turbine with broken mooring line," Renewable Energy, Elsevier, vol. 101(C), pages 364-375.
    7. Zhang, Xiantao & Tian, XinLiang & Xiao, Longfei & Li, Xin & Lu, Wenyue, 2019. "Mechanism and sensitivity for broadband energy harvesting of an adaptive bistable point absorber wave energy converter," Energy, Elsevier, vol. 188(C).
    8. Cheng, Zhengshun & Wen, Ting Rui & Ong, Muk Chen & Wang, Kai, 2019. "Power performance and dynamic responses of a combined floating vertical axis wind turbine and wave energy converter concept," Energy, Elsevier, vol. 171(C), pages 190-204.
    9. Choupin, Ophelie & Del Río-Gamero, B. & Schallenberg-Rodríguez, Julieta & Yánez-Rosales, Pablo, 2022. "Integration of assessment-methods for wave renewable energy: Resource and installation feasibility," Renewable Energy, Elsevier, vol. 185(C), pages 455-482.
    10. Li, Ye & Yu, Yi-Hsiang, 2012. "A synthesis of numerical methods for modeling wave energy converter-point absorbers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4352-4364.
    11. Gunn, Kester & Stock-Williams, Clym, 2012. "Quantifying the global wave power resource," Renewable Energy, Elsevier, vol. 44(C), pages 296-304.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Binzhen & Hu, Jianjian & Jin, Peng & Sun, Ke & Li, Ye & Ning, Dezhi, 2023. "Power performance and motion response of a floating wind platform and multiple heaving wave energy converters hybrid system," Energy, Elsevier, vol. 265(C).
    2. Zi Lin & Xiaolei Liu, 2020. "Assessment of Wind Turbine Aero-Hydro-Servo-Elastic Modelling on the Effects of Mooring Line Tension via Deep Learning," Energies, MDPI, vol. 13(9), pages 1-21, May.
    3. Wan, Ling & Moan, Torgeir & Gao, Zhen & Shi, Wei, 2024. "A review on the technical development of combined wind and wave energy conversion systems," Energy, Elsevier, vol. 294(C).
    4. He, Guanghua & Luan, Zhengxiao & Zhang, Wei & He, Runhua & Liu, Chaogang & Yang, Kaibo & Yang, Changhao & Jing, Penglin & Zhang, Zhigang, 2023. "Review on research approaches for multi-point absorber wave energy converters," Renewable Energy, Elsevier, vol. 218(C).
    5. Zhao, Hongbiao & Stansby, Peter & Liao, Zhijing & Li, Guang, 2024. "Multi-objective optimal control of a hybrid offshore wind turbine platform integrated with multi-float wave energy converters," Energy, Elsevier, vol. 312(C).
    6. Zeng, Xinmeng & Shao, Yanlin & Feng, Xingya & Xu, Kun & Jin, Ruijia & Li, Huajun, 2024. "Nonlinear hydrodynamics of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    7. Rosa-Santos, Paulo & Taveira-Pinto, Francisco & Rodríguez, Claudio A. & Ramos, Victor & López, Mario, 2019. "The CECO wave energy converter: Recent developments," Renewable Energy, Elsevier, vol. 139(C), pages 368-384.
    8. Fadaeenejad, M. & Shamsipour, R. & Rokni, S.D. & Gomes, C., 2014. "New approaches in harnessing wave energy: With special attention to small islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 345-354.
    9. Gaspar, J.F. & Kamarlouei, M. & Thiebaut, F. & Guedes Soares, C., 2021. "Compensation of a hybrid platform dynamics using wave energy converters in different sea state conditions," Renewable Energy, Elsevier, vol. 177(C), pages 871-883.
    10. Saincher, Shaswat & Banerjee, Jyotirmay, 2016. "Influence of wave breaking on the hydrodynamics of wave energy converters: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 704-717.
    11. Li, Yanni & Yan, Shiqiang & Shi, Hongda & Ma, Qingwei & Li, Demin & Cao, Feifei, 2023. "Hydrodynamic analysis of a novel multi-buoy wind-wave energy system," Renewable Energy, Elsevier, vol. 219(P1).
    12. Zheng, Chong Wei & Wang, Qing & Li, Chong Yin, 2017. "An overview of medium- to long-term predictions of global wave energy resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1492-1502.
    13. Wang, Shangming & Xu, Hao & Gao, Zhiteng & Li, Ye, 2024. "Performance analysis of a novel hybrid device with floating breakwater and wave energy converter integrated," Renewable Energy, Elsevier, vol. 237(PB).
    14. Luan, Zhengxiao & Chen, Bangqi & Jin, Ruijia & He, Guanghua & Ghassemi, Hassan & Jing, Penglin, 2024. "Validation of a numerical wave tank based on overset mesh for the wavestar-like wave energy converter in the South China Sea," Energy, Elsevier, vol. 290(C).
    15. Fares M’zoughi & Payam Aboutalebi & Izaskun Garrido & Aitor J. Garrido & Manuel De La Sen, 2021. "Complementary Airflow Control of Oscillating Water Columns for Floating Offshore Wind Turbine Stabilization," Mathematics, MDPI, vol. 9(12), pages 1-15, June.
    16. Yang, Yang & Bashir, Musa & Michailides, Constantine & Mei, Xuan & Wang, Jin & Li, Chun, 2021. "Coupled analysis of a 10 MW multi-body floating offshore wind turbine subjected to tendon failures," Renewable Energy, Elsevier, vol. 176(C), pages 89-105.
    17. Jia, Wenzhe & Liu, Qingsong & lglesias, Gregorio & Miao, Weipao & Yue, Minnan & Yang, Yang & Li, Chun, 2024. "Investigation of barge-type FOWT in the context of concurrent and cascading failures within the mooring systems," Renewable Energy, Elsevier, vol. 224(C).
    18. Zhou, Binzhen & Zheng, Zhi & Jin, Peng & Wang, Lei & Zang, Jun, 2022. "Wave attenuation and focusing performance of parallel twin parabolic arc floating breakwaters," Energy, Elsevier, vol. 260(C).
    19. Sun, Kang & Xu, Zifei & Li, Shujun & Jin, Jiangtao & Wang, Peilin & Yue, Minnan & Li, Chun, 2023. "Dynamic response analysis of floating wind turbine platform in local fatigue of mooring," Renewable Energy, Elsevier, vol. 204(C), pages 733-749.
    20. Wang, Liguo & Isberg, Jan & Tedeschi, Elisabetta, 2018. "Review of control strategies for wave energy conversion systems and their validation: the wave-to-wire approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 366-379.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224035394. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.