IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v219y2023ip1s0960148123013927.html
   My bibliography  Save this article

Hydrodynamic analysis of a novel multi-buoy wind-wave energy system

Author

Listed:
  • Li, Yanni
  • Yan, Shiqiang
  • Shi, Hongda
  • Ma, Qingwei
  • Li, Demin
  • Cao, Feifei

Abstract

Hybrid wind-wave systems combining the wave energy converters (WECs) with offshore wind turbines (OWTs) is a promising way to enhance the power production and improve the sea space utilization. In this paper, a novel hybrid wind-wave conceptual system, in which a multi-buoy WEC is integrated with a fixed monopile OWT, is proposed. This is the first concept utilizing multi-buoy WECs and is distinguished from existing hybrid wind-wave systems with a fixed monopile OWT, which integrate a single oscillating water column or a heaving point absorber. To characterize the hydrodynamics associated with the proposed system in operational wave conditions with different directionalities, a potential flow solver with an appropriate power take-off (PTO) model is applied. The results demonstrate a significant buoy-buoy and buoy-monopile hydrodynamic interaction, suggesting that the existing hydrodynamic characteristics for the wind-wave system with a single buoy WEC may not be applicable to the new system. More importantly, the power performance of the present system is proven to be better than the corresponding single-buoy wind-wave system, as being quantitatively assessed by the newly-defined evaluation index within the range of the consideration of this paper.

Suggested Citation

  • Li, Yanni & Yan, Shiqiang & Shi, Hongda & Ma, Qingwei & Li, Demin & Cao, Feifei, 2023. "Hydrodynamic analysis of a novel multi-buoy wind-wave energy system," Renewable Energy, Elsevier, vol. 219(P1).
  • Handle: RePEc:eee:renene:v:219:y:2023:i:p1:s0960148123013927
    DOI: 10.1016/j.renene.2023.119477
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123013927
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119477?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cradden, L. & Kalogeri, C. & Barrios, I. Martinez & Galanis, G. & Ingram, D. & Kallos, G., 2016. "Multi-criteria site selection for offshore renewable energy platforms," Renewable Energy, Elsevier, vol. 87(P1), pages 791-806.
    2. Kamarlouei, M. & Gaspar, J.F. & Calvario, M. & Hallak, T.S. & Mendes, M.J.G.C. & Thiebaut, F. & Guedes Soares, C., 2020. "Experimental analysis of wave energy converters concentrically attached on a floating offshore platform," Renewable Energy, Elsevier, vol. 152(C), pages 1171-1185.
    3. Kamarlouei, M. & Gaspar, J.F. & Calvario, M. & Hallak, T.S. & Mendes, M.J.G.C. & Thiebaut, F. & Guedes Soares, C., 2022. "Experimental study of wave energy converter arrays adapted to a semi-submersible wind platform," Renewable Energy, Elsevier, vol. 188(C), pages 145-163.
    4. Wan, Ling & Gao, Zhen & Moan, Torgeir & Lugni, Claudio, 2016. "Experimental and numerical comparisons of hydrodynamic responses for a combined wind and wave energy converter concept under operational conditions," Renewable Energy, Elsevier, vol. 93(C), pages 87-100.
    5. Muliawan, Made Jaya & Karimirad, Madjid & Moan, Torgeir, 2013. "Dynamic response and power performance of a combined Spar-type floating wind turbine and coaxial floating wave energy converter," Renewable Energy, Elsevier, vol. 50(C), pages 47-57.
    6. Ren, Nianxin & Ma, Zhe & Shan, Baohua & Ning, Dezhi & Ou, Jinping, 2020. "Experimental and numerical study of dynamic responses of a new combined TLP type floating wind turbine and a wave energy converter under operational conditions," Renewable Energy, Elsevier, vol. 151(C), pages 966-974.
    7. Hyebin Lee & Sunny Kumar Poguluri & Yoon Hyeok Bae, 2018. "Performance Analysis of Multiple Wave Energy Converters Placed on a Floating Platform in the Frequency Domain," Energies, MDPI, vol. 11(2), pages 1-14, February.
    8. Hu, Jianjian & Zhou, Binzhen & Vogel, Christopher & Liu, Pin & Willden, Richard & Sun, Ke & Zang, Jun & Geng, Jing & Jin, Peng & Cui, Lin & Jiang, Bo & Collu, Maurizio, 2020. "Optimal design and performance analysis of a hybrid system combing a floating wind platform and wave energy converters," Applied Energy, Elsevier, vol. 269(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gaspar, J.F. & Kamarlouei, M. & Thiebaut, F. & Guedes Soares, C., 2021. "Compensation of a hybrid platform dynamics using wave energy converters in different sea state conditions," Renewable Energy, Elsevier, vol. 177(C), pages 871-883.
    2. Jin, Peng & Zheng, Zhi & Zhou, Zhaomin & Zhou, Binzhen & Wang, Lei & Yang, Yang & Liu, Yingyi, 2023. "Optimization and evaluation of a semi-submersible wind turbine and oscillating body wave energy converters hybrid system," Energy, Elsevier, vol. 282(C).
    3. Wei, Zhiwen & Shi, Hongda & Cao, Feifei & Yu, Mingqi & Li, Ming & Chen, Zhen & Liu, Peng, 2024. "Study on the power performance of wave energy converters mounted around an offshore wind turbine jacket platform," Renewable Energy, Elsevier, vol. 221(C).
    4. Zhou, Binzhen & Hu, Jianjian & Jin, Peng & Sun, Ke & Li, Ye & Ning, Dezhi, 2023. "Power performance and motion response of a floating wind platform and multiple heaving wave energy converters hybrid system," Energy, Elsevier, vol. 265(C).
    5. Kamarlouei, M. & Gaspar, J.F. & Calvario, M. & Hallak, T.S. & Mendes, M.J.G.C. & Thiebaut, F. & Guedes Soares, C., 2022. "Experimental study of wave energy converter arrays adapted to a semi-submersible wind platform," Renewable Energy, Elsevier, vol. 188(C), pages 145-163.
    6. Cao, Feifei & Yu, Mingqi & Han, Meng & Liu, Bing & Wei, Zhiwen & Jiang, Juan & Tian, Huiyuan & Shi, Hongda & Li, Yanni, 2023. "WECs microarray effect on the coupled dynamic response and power performance of a floating combined wind and wave energy system," Renewable Energy, Elsevier, vol. 219(P2).
    7. He, Guanghua & Luan, Zhengxiao & Zhang, Wei & He, Runhua & Liu, Chaogang & Yang, Kaibo & Yang, Changhao & Jing, Penglin & Zhang, Zhigang, 2023. "Review on research approaches for multi-point absorber wave energy converters," Renewable Energy, Elsevier, vol. 218(C).
    8. Zhu, Kai & Shi, Hongda & Zheng, Siming & Michele, Simone & Cao, Feifei, 2023. "Hydrodynamic analysis of hybrid system with wind turbine and wave energy converter," Applied Energy, Elsevier, vol. 350(C).
    9. Yazdi, Hossein & Ghafari, Hamid Reza & Ghassemi, Hassan & He, Guanghua & Karimirad, Madjid, 2023. "Wave power extraction by Multi-Salter's duck WECs arrayed on the floating offshore wind turbine platform," Energy, Elsevier, vol. 278(PA).
    10. Zhou, Binzhen & Hu, Jianjian & Wang, Yu & Jin, Peng & Jing, Fengmei & Ning, Dezhi, 2023. "Coupled dynamic and power generation characteristics of a hybrid system consisting of a semi-submersible wind turbine and an array of heaving wave energy converters," Renewable Energy, Elsevier, vol. 214(C), pages 23-38.
    11. Cao, Shugang & Cheng, Youliang & Duan, Jinlong & Fan, Xiaoxu, 2022. "Experimental investigation on the dynamic response of an innovative semi-submersible floating wind turbine with aquaculture cages," Renewable Energy, Elsevier, vol. 200(C), pages 1393-1415.
    12. Payam Aboutalebi & Fares M’zoughi & Izaskun Garrido & Aitor J. Garrido, 2021. "Performance Analysis on the Use of Oscillating Water Column in Barge-Based Floating Offshore Wind Turbines," Mathematics, MDPI, vol. 9(5), pages 1-22, February.
    13. da Silva, L.S.P. & Sergiienko, N.Y. & Cazzolato, B. & Ding, B., 2022. "Dynamics of hybrid offshore renewable energy platforms: Heaving point absorbers connected to a semi-submersible floating offshore wind turbine," Renewable Energy, Elsevier, vol. 199(C), pages 1424-1439.
    14. Hu, Jianjian & Zhou, Binzhen & Vogel, Christopher & Liu, Pin & Willden, Richard & Sun, Ke & Zang, Jun & Geng, Jing & Jin, Peng & Cui, Lin & Jiang, Bo & Collu, Maurizio, 2020. "Optimal design and performance analysis of a hybrid system combing a floating wind platform and wave energy converters," Applied Energy, Elsevier, vol. 269(C).
    15. Cheng, Zhengshun & Wen, Ting Rui & Ong, Muk Chen & Wang, Kai, 2019. "Power performance and dynamic responses of a combined floating vertical axis wind turbine and wave energy converter concept," Energy, Elsevier, vol. 171(C), pages 190-204.
    16. Vasileiou, Margarita & Loukogeorgaki, Eva & Vagiona, Dimitra G., 2017. "GIS-based multi-criteria decision analysis for site selection of hybrid offshore wind and wave energy systems in Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 745-757.
    17. David M. Skene & Nataliia Sergiienko & Boyin Ding & Benjamin Cazzolato, 2021. "The Prospect of Combining a Point Absorber Wave Energy Converter with a Floating Offshore Wind Turbine," Energies, MDPI, vol. 14(21), pages 1-24, November.
    18. Wang, Yize & Liu, Zhenqing & Wang, Hao, 2022. "Proposal and layout optimization of a wind-wave hybrid energy system using GPU-accelerated differential evolution algorithm," Energy, Elsevier, vol. 239(PA).
    19. Luan, Zhengxiao & Chen, Bangqi & Jin, Ruijia & He, Guanghua & Ghassemi, Hassan & Jing, Penglin, 2024. "Validation of a numerical wave tank based on overset mesh for the wavestar-like wave energy converter in the South China Sea," Energy, Elsevier, vol. 290(C).
    20. Li, Liang & Yuan, Zhi-Ming & Gao, Yan & Zhang, Xinshu & Tezdogan, Tahsin, 2019. "Investigation on long-term extreme response of an integrated offshore renewable energy device with a modified environmental contour method," Renewable Energy, Elsevier, vol. 132(C), pages 33-42.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:219:y:2023:i:p1:s0960148123013927. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.