IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v322y2025ics0360544225013714.html
   My bibliography  Save this article

Dynamic response characteristics of the taut mooring system for integrated renewable energy devices

Author

Listed:
  • Zhang, Huidong
  • Elsakka, Mohamed
  • Liu, Bin
  • Xu, Sheng
  • Shi, Hongda

Abstract

The safety of mooring system is critical for the floating renewable energy devices. The performance of one taut mooring system, designed for keeping the position of integrated devices, is experimentally investigated in both regular and irregular waves, taking into account the effects of the incident wave angle, the PTO damping force and the heaving point absorbers. It reveals that a local maximum and minimum, indicating the high-frequency oscillation, appear within each cycle of taut mooring loads. Meanwhile, in the frequency domain, the multiple spectral peaks and a downshift of high-order peak frequencies can be detected with the intensified vibration. At specific incident angles, the snap load can be triggered more easily in the same sea state, accompanied with the appearance of slow-drift motion of the integrated device. The PTO damping force can significantly change the performance of mooring lines at the initial loading stage and the mechanism involved for each mooring line can be totally different. The layout of split floaters with respect to the incident wave mainly affects the motion-induced component of maximum mooring loads, without significantly change the oscillation-induced ones. Under certain conditions, the mutual inhibition effect between wave-frequency and high-frequency load components can be detected for the same mooring line.

Suggested Citation

  • Zhang, Huidong & Elsakka, Mohamed & Liu, Bin & Xu, Sheng & Shi, Hongda, 2025. "Dynamic response characteristics of the taut mooring system for integrated renewable energy devices," Energy, Elsevier, vol. 322(C).
  • Handle: RePEc:eee:energy:v:322:y:2025:i:c:s0360544225013714
    DOI: 10.1016/j.energy.2025.135729
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225013714
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135729?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Li, Yan & Zhu, Qiang & Liu, Liqin & Tang, Yougang, 2018. "Transient response of a SPAR-type floating offshore wind turbine with fractured mooring lines," Renewable Energy, Elsevier, vol. 122(C), pages 576-588.
    2. Kim, T. & Madsen, F.J. & Bredmose, H. & Pegalajar-Jurado, A., 2023. "Numerical analysis and comparison study of the 1:60 scaled DTU 10 MW TLP floating wind turbine," Renewable Energy, Elsevier, vol. 202(C), pages 210-221.
    3. Li, Xuan & Zhang, Wei, 2020. "Long-term fatigue damage assessment for a floating offshore wind turbine under realistic environmental conditions," Renewable Energy, Elsevier, vol. 159(C), pages 570-584.
    4. Elwood, David & Yim, Solomon C. & Prudell, Joe & Stillinger, Chad & von Jouanne, Annette & Brekken, Ted & Brown, Adam & Paasch, Robert, 2010. "Design, construction, and ocean testing of a taut-moored dual-body wave energy converter with a linear generator power take-off," Renewable Energy, Elsevier, vol. 35(2), pages 348-354.
    5. Dragić, Mile & Hofman, Milan & Tomin, Veselin & Miškov, Vladimir, 2023. "Sea trials of Sigma wave energy converter – Power and efficiency," Renewable Energy, Elsevier, vol. 206(C), pages 748-766.
    6. Rui, Shengjie & Zhou, Zefeng & Gao, Zhen & Jostad, Hans Petter & Wang, Lizhong & Xu, Hang & Guo, Zhen, 2024. "A review on mooring lines and anchors of floating marine structures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    7. Wan, Ling & Gao, Zhen & Moan, Torgeir & Lugni, Claudio, 2016. "Experimental and numerical comparisons of hydrodynamic responses for a combined wind and wave energy converter concept under operational conditions," Renewable Energy, Elsevier, vol. 93(C), pages 87-100.
    8. Gubesch, Eric & Abdussamie, Nagi & Penesis, Irene & Chin, Christopher, 2022. "Effects of mooring configurations on the hydrodynamic performance of a floating offshore oscillating water column wave energy converter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    9. Ren, Yajun & Shi, Wei & Venugopal, Vengatesan & Zhang, Lixian & Li, Xin, 2024. "Experimental study of tendon failure analysis for a TLP floating offshore wind turbine," Applied Energy, Elsevier, vol. 358(C).
    10. Bae, Y.H. & Kim, M.H. & Kim, H.C., 2017. "Performance changes of a floating offshore wind turbine with broken mooring line," Renewable Energy, Elsevier, vol. 101(C), pages 364-375.
    11. Xu, Sheng & Wang, Shan & Guedes Soares, C., 2019. "Review of mooring design for floating wave energy converters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 595-621.
    12. Tagliafierro, Bonaventura & Martínez-Estévez, Iván & Domínguez, José M. & Crespo, Alejandro J.C. & Göteman, Malin & Engström, Jens & Gómez-Gesteira, Moncho, 2022. "A numerical study of a taut-moored point-absorber wave energy converter with a linear power take-off system under extreme wave conditions," Applied Energy, Elsevier, vol. 311(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, Lin & Wu, Haitao & Li, Meng & Lu, Mengyao & Liu, Weixing & Zhang, Zhiyang, 2024. "Effects of mooring failure on the dynamic behavior of the power capture platforms," Energy, Elsevier, vol. 313(C).
    2. Zeng, Xinmeng & Shao, Yanlin & Feng, Xingya & Xu, Kun & Jin, Ruijia & Li, Huajun, 2024. "Nonlinear hydrodynamics of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    3. Raju Ahamed & Kristoffer McKee & Ian Howard, 2022. "A Review of the Linear Generator Type of Wave Energy Converters’ Power Take-Off Systems," Sustainability, MDPI, vol. 14(16), pages 1-42, August.
    4. Dell’Edera, Oronzo & Niosi, Francesco & Casalone, Pietro & Bonfanti, Mauro & Paduano, Bruno & Mattiazzo, Giuliana, 2024. "Understanding wave energy converters dynamics: High-fidelity modeling and validation of a moored floating body," Applied Energy, Elsevier, vol. 376(PA).
    5. Zi Lin & Xiaolei Liu, 2020. "Assessment of Wind Turbine Aero-Hydro-Servo-Elastic Modelling on the Effects of Mooring Line Tension via Deep Learning," Energies, MDPI, vol. 13(9), pages 1-21, May.
    6. Capasso, Salvatore & Tagliafierro, Bonaventura & Martínez-Estévez, Iván & Altomare, Corrado & Gómez-Gesteira, Moncho & Göteman, Malin & Viccione, Giacomo, 2025. "Development of an SPH-based numerical wave–current tank and application to wave energy converters," Applied Energy, Elsevier, vol. 377(PB).
    7. Dimitrios N. Konispoliatis & Anargyros S. Mavrakos, 2025. "Comparative Analysis of Catenary and TLP Mooring Systems on the Wave Power Efficiency for a Dual-Chamber OWC Wave Energy Converter," Energies, MDPI, vol. 18(6), pages 1-36, March.
    8. Yang, Yang & Bashir, Musa & Michailides, Constantine & Mei, Xuan & Wang, Jin & Li, Chun, 2021. "Coupled analysis of a 10 MW multi-body floating offshore wind turbine subjected to tendon failures," Renewable Energy, Elsevier, vol. 176(C), pages 89-105.
    9. Jia, Wenzhe & Liu, Qingsong & lglesias, Gregorio & Miao, Weipao & Yue, Minnan & Yang, Yang & Li, Chun, 2024. "Investigation of barge-type FOWT in the context of concurrent and cascading failures within the mooring systems," Renewable Energy, Elsevier, vol. 224(C).
    10. Sun, Kang & Xu, Zifei & Li, Shujun & Jin, Jiangtao & Wang, Peilin & Yue, Minnan & Li, Chun, 2023. "Dynamic response analysis of floating wind turbine platform in local fatigue of mooring," Renewable Energy, Elsevier, vol. 204(C), pages 733-749.
    11. Su, Ouming & Li, Yan & Li, Guoyan & Cui, Yiwen & Li, Haoran & Wang, Bin & Meng, Hang & Li, Yaolong & Liang, Jinfeng, 2024. "Nonlinear harmonic resonant behaviors and bifurcation in a Two Degree-of-Freedom Duffing oscillator coupled system of Tension Leg Platform type Floating Offshore Wind Turbine," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
    12. Ren, Yajun & Shi, Wei & Venugopal, Vengatesan & Zhang, Lixian & Li, Xin, 2024. "Experimental study of tendon failure analysis for a TLP floating offshore wind turbine," Applied Energy, Elsevier, vol. 358(C).
    13. Tunde Aderinto & Hua Li, 2020. "Effect of Spatial and Temporal Resolution Data on Design and Power Capture of a Heaving Point Absorber," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
    14. Shanka Vasuki, Sathya & Levell, Jack & Santbergen, Rudi & Isabella, Olindo, 2025. "A technical review on the energy yield estimation of offshore floating photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 216(C).
    15. Li, Xuan & Zhang, Wei, 2022. "Physics-informed deep learning model in wind turbine response prediction," Renewable Energy, Elsevier, vol. 185(C), pages 932-944.
    16. Chen, Xinhui & Wei, Jianfeng & Sheng, Songwei & Wang, Wensheng & Wang, Kunlin & Zhang, Yaqun & Wang, Zhenpeng, 2023. "Design and experimental study of a novel type water-filled submerged flexible bag wave energy converter," Renewable Energy, Elsevier, vol. 218(C).
    17. Venugopalan Kurupath & Rickard Ekström & Mats Leijon, 2013. "Optimal Constant DC Link Voltage Operation of a Wave Energy Converter," Energies, MDPI, vol. 6(4), pages 1-14, April.
    18. Cheng, Zhengshun & Wen, Ting Rui & Ong, Muk Chen & Wang, Kai, 2019. "Power performance and dynamic responses of a combined floating vertical axis wind turbine and wave energy converter concept," Energy, Elsevier, vol. 171(C), pages 190-204.
    19. Baolong Liu & Jianxing Yu, 2022. "Dynamic Response of SPAR-Type Floating Offshore Wind Turbine under Wave Group Scenarios," Energies, MDPI, vol. 15(13), pages 1-18, July.
    20. Halliday, J. Ross & Dorrell, David G. & Wood, Alan R., 2011. "An application of the Fast Fourier Transform to the short-term prediction of sea wave behaviour," Renewable Energy, Elsevier, vol. 36(6), pages 1685-1692.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:322:y:2025:i:c:s0360544225013714. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.