IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i10p3726-d819073.html
   My bibliography  Save this article

Numerical Prediction on the Dynamic Response of a Helical Floating Vertical Axis Wind Turbine Based on an Aero-Hydro-Mooring-Control Coupled Model

Author

Listed:
  • Yan Li

    (State Key Laboratory of Hydraulic Engineering Simulation and Safety, School of Civil Engineering, Tianjin University, Tianjin 300354, China
    Tianjin Key Laboratory of Port and Ocean Engineering, School of Civil Engineering, Tianjin University, Tianjin 300354, China)

  • Liqin Liu

    (State Key Laboratory of Hydraulic Engineering Simulation and Safety, School of Civil Engineering, Tianjin University, Tianjin 300354, China
    Tianjin Key Laboratory of Port and Ocean Engineering, School of Civil Engineering, Tianjin University, Tianjin 300354, China)

  • Ying Guo

    (State Key Laboratory of Hydraulic Engineering Simulation and Safety, School of Civil Engineering, Tianjin University, Tianjin 300354, China
    Tianjin Key Laboratory of Port and Ocean Engineering, School of Civil Engineering, Tianjin University, Tianjin 300354, China
    Tianjin Navigation Instrument Research Institute, Tianjin 300131, China)

  • Wanru Deng

    (State Key Laboratory of Hydraulic Engineering Simulation and Safety, School of Civil Engineering, Tianjin University, Tianjin 300354, China
    Tianjin Key Laboratory of Port and Ocean Engineering, School of Civil Engineering, Tianjin University, Tianjin 300354, China)

Abstract

Considering the aero-hydro-mooring-control coupled performance of a floating Vertical Axis Wind Turbine (VAWT), the numerical model of the floating helical VAWT system is established, and the fully coupled simulation program of the floating helical VAWT is developed. The aerodynamic load of the wind turbine system is calculated using the unsteady BEM model, and the hydrodynamic load is calculated using the 3D potential theory. The floating foundation is considered as a rigid body, and the blades and tower are considered as flexible bodies. Based on the Kane method of a multi-body system, the dynamic responses of the VAWT could be solved in the time domain. A variable speed control model considering efficiency and load is established to match the rotating speed with the wind speed, and it could maintain the target output power under the influence of turbulent wind and large-scale movement of the floating foundation. The control strategy of limiting the target speed change rate and low-pass filtering is adopted to ensure the rapid regulation of the wind turbine under low wind speed conditions and stable regulation under high wind speed conditions.

Suggested Citation

  • Yan Li & Liqin Liu & Ying Guo & Wanru Deng, 2022. "Numerical Prediction on the Dynamic Response of a Helical Floating Vertical Axis Wind Turbine Based on an Aero-Hydro-Mooring-Control Coupled Model," Energies, MDPI, vol. 15(10), pages 1-21, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3726-:d:819073
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/10/3726/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/10/3726/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Yan & Zhu, Qiang & Liu, Liqin & Tang, Yougang, 2018. "Transient response of a SPAR-type floating offshore wind turbine with fractured mooring lines," Renewable Energy, Elsevier, vol. 122(C), pages 576-588.
    2. Kumar, Rakesh & Raahemifar, Kaamran & Fung, Alan S., 2018. "A critical review of vertical axis wind turbines for urban applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 281-291.
    3. Zhu, Xinyu & Guo, Zhiping & Zhang, Yanfeng & Song, Xiaowen & Cai, Chang & Kamada, Yasunari & Maeda, Takao & Li, Qing'an, 2022. "Numerical study of aerodynamic characteristics on a straight-bladed vertical axis wind turbine with bionic blades," Energy, Elsevier, vol. 239(PE).
    4. Salehyar, Sara & Li, Yan & Zhu, Qiang, 2017. "Fully-coupled time-domain simulations of the response of a floating wind turbine to non-periodic disturbances," Renewable Energy, Elsevier, vol. 111(C), pages 214-226.
    5. Cheng, Zhengshun & Madsen, Helge Aagaard & Gao, Zhen & Moan, Torgeir, 2017. "Effect of the number of blades on the dynamics of floating straight-bladed vertical axis wind turbines," Renewable Energy, Elsevier, vol. 101(C), pages 1285-1298.
    6. Gao, Ju & Griffith, D. Todd & Sakib, Mohammad Sadman & Boo, Sung Youn, 2022. "A semi-coupled aero-servo-hydro numerical model for floating vertical axis wind turbines operating on TLPs," Renewable Energy, Elsevier, vol. 181(C), pages 692-713.
    7. Senad Apelfröjd & Sandra Eriksson & Hans Bernhoff, 2016. "A Review of Research on Large Scale Modern Vertical Axis Wind Turbines at Uppsala University," Energies, MDPI, vol. 9(7), pages 1-16, July.
    8. Tjiu, Willy & Marnoto, Tjukup & Mat, Sohif & Ruslan, Mohd Hafidz & Sopian, Kamaruzzaman, 2015. "Darrieus vertical axis wind turbine for power generation I: Assessment of Darrieus VAWT configurations," Renewable Energy, Elsevier, vol. 75(C), pages 50-67.
    9. Tjiu, Willy & Marnoto, Tjukup & Mat, Sohif & Ruslan, Mohd Hafidz & Sopian, Kamaruzzaman, 2015. "Darrieus vertical axis wind turbine for power generation II: Challenges in HAWT and the opportunity of multi-megawatt Darrieus VAWT development," Renewable Energy, Elsevier, vol. 75(C), pages 560-571.
    10. Cheng, Zhengshun & Madsen, Helge Aagaard & Chai, Wei & Gao, Zhen & Moan, Torgeir, 2017. "A comparison of extreme structural responses and fatigue damage of semi-submersible type floating horizontal and vertical axis wind turbines," Renewable Energy, Elsevier, vol. 108(C), pages 207-219.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Micallef, 2023. "Advancements in Offshore Vertical Axis Wind Turbines," Energies, MDPI, vol. 16(4), pages 1-3, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Su, Jie & Li, Yu & Chen, Yaoran & Han, Zhaolong & Zhou, Dai & Zhao, Yongsheng & Bao, Yan, 2021. "Aerodynamic performance assessment of φ-type vertical axis wind turbine under pitch motion," Energy, Elsevier, vol. 225(C).
    2. Hand, Brian & Kelly, Ger & Cashman, Andrew, 2021. "Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    3. Morgan Rossander & Anders Goude & Sandra Eriksson, 2017. "Critical Speed Control for a Fixed Blade Variable Speed Wind Turbine," Energies, MDPI, vol. 10(11), pages 1-21, October.
    4. Balduzzi, Francesco & Bianchini, Alessandro & Ferrara, Giovanni & Ferrari, Lorenzo, 2016. "Dimensionless numbers for the assessment of mesh and timestep requirements in CFD simulations of Darrieus wind turbines," Energy, Elsevier, vol. 97(C), pages 246-261.
    5. Anders Goude & Morgan Rossander, 2017. "Force Measurements on a VAWT Blade in Parked Conditions," Energies, MDPI, vol. 10(12), pages 1-15, November.
    6. Xiangyuan Zheng & Huadong Zheng & Yu Lei & Yi Li & Wei Li, 2020. "An Offshore Floating Wind–Solar–Aquaculture System: Concept Design and Extreme Response in Survival Conditions," Energies, MDPI, vol. 13(3), pages 1-23, January.
    7. Cheng, Zhengshun & Wen, Ting Rui & Ong, Muk Chen & Wang, Kai, 2019. "Power performance and dynamic responses of a combined floating vertical axis wind turbine and wave energy converter concept," Energy, Elsevier, vol. 171(C), pages 190-204.
    8. Baolong Liu & Jianxing Yu, 2022. "Dynamic Response of SPAR-Type Floating Offshore Wind Turbine under Wave Group Scenarios," Energies, MDPI, vol. 15(13), pages 1-18, July.
    9. Su, Jie & Chen, Yaoran & Han, Zhaolong & Zhou, Dai & Bao, Yan & Zhao, Yongsheng, 2020. "Investigation of V-shaped blade for the performance improvement of vertical axis wind turbines," Applied Energy, Elsevier, vol. 260(C).
    10. Patel, Vimal & Eldho, T.I. & Prabhu, S.V., 2019. "Performance enhancement of a Darrieus hydrokinetic turbine with the blocking of a specific flow region for optimum use of hydropower," Renewable Energy, Elsevier, vol. 135(C), pages 1144-1156.
    11. Pei Zhang & Shugeng Yang & Yan Li & Jiayang Gu & Zhiqiang Hu & Ruoyu Zhang & Yougang Tang, 2020. "Dynamic Response of Articulated Offshore Wind Turbines under Different Water Depths," Energies, MDPI, vol. 13(11), pages 1-20, June.
    12. Daniel Micallef & Gerard Van Bussel, 2018. "A Review of Urban Wind Energy Research: Aerodynamics and Other Challenges," Energies, MDPI, vol. 11(9), pages 1-27, August.
    13. Peng, H.Y. & Liu, H.J. & Yang, J.H., 2021. "A review on the wake aerodynamics of H-rotor vertical axis wind turbines," Energy, Elsevier, vol. 232(C).
    14. Walid M. Nassar & Olimpo Anaya-Lara & Khaled H. Ahmed & David Campos-Gaona & Mohamed Elgenedy, 2020. "Assessment of Multi-Use Offshore Platforms: Structure Classification and Design Challenges," Sustainability, MDPI, vol. 12(5), pages 1-23, March.
    15. Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
    16. Zhu, Haitian & Hao, Wenxing & Li, Chun & Ding, Qinwei & Wu, Baihui, 2018. "A critical study on passive flow control techniques for straight-bladed vertical axis wind turbine," Energy, Elsevier, vol. 165(PA), pages 12-25.
    17. Chong, Wen-Tong & Muzammil, Wan Khairul & Wong, Kok-Hoe & Wang, Chin-Tsan & Gwani, Mohammed & Chu, Yung-Jeh & Poh, Sin-Chew, 2017. "Cross axis wind turbine: Pushing the limit of wind turbine technology with complementary design," Applied Energy, Elsevier, vol. 207(C), pages 78-95.
    18. Xu, Wenhao & Li, Ye & Li, Gaohua & Li, Shoutu & Zhang, Chen & Wang, Fuxin, 2021. "High-resolution numerical simulation of the performance of vertical axis wind turbines in urban area: Part II, array of vertical axis wind turbines between buildings," Renewable Energy, Elsevier, vol. 176(C), pages 25-39.
    19. Krzysztof Rogowski & Martin Otto Laver Hansen & Galih Bangga, 2020. "Performance Analysis of a H-Darrieus Wind Turbine for a Series of 4-Digit NACA Airfoils," Energies, MDPI, vol. 13(12), pages 1-28, June.
    20. Li, Qing'an & Maeda, Takao & Kamada, Yasunari & Murata, Junsuke & Furukawa, Kazuma & Yamamoto, Masayuki, 2015. "Effect of number of blades on aerodynamic forces on a straight-bladed Vertical Axis Wind Turbine," Energy, Elsevier, vol. 90(P1), pages 784-795.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3726-:d:819073. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.