IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2022i1p129-d1010911.html
   My bibliography  Save this article

Influence of Currents on the Breaking Wave Forces Acting on Monopiles over an Impermeable Slope

Author

Listed:
  • Shan Liu

    (College of Civil Engineering and Architecture, Zhejiang Tongji Vocational College of Science and Technology, Hangzhou 311231, China)

  • Zhenyu Liu

    (College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China)

Abstract

It is known that the wave breaking process is significantly affected by a current, but little attention has been paid to the effect of wave–current interaction on the breaking wave forces acting on a monopile. This study presented a total of 88 flume tests, among which solitary and regular breaking waves were generated with a following current. The waves propagated over an impermeable slope and induced impulsive loads on a vertical monopile. The moments on the monopile were measured utilizing a high-precision load cell, and the effect of current velocities on the peak moment was analyzed. Test results indicate that there was an obvious nonlinear effect between breaking waves and a following current. For solitary waves, a following current accelerated the breaking process, leading to an increase by 274.21% at maximum in breaking wave forces. However, for regular waves, both the wave heights and the reversing flow were restricted with the increasing velocity of a following current, delaying the wave breaking process; under the regular test conditions, the moment on the pile decreased by 65.25% at maximum.

Suggested Citation

  • Shan Liu & Zhenyu Liu, 2022. "Influence of Currents on the Breaking Wave Forces Acting on Monopiles over an Impermeable Slope," Sustainability, MDPI, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:129-:d:1010911
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/1/129/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/1/129/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Libo Chen & Xiaoyan Yang & Lichen Li & Wenbing Wu & M. Hesham El Naggar & Kuihua Wang & Jinyong Chen, 2020. "Numerical Analysis of the Deformation Performance of Monopile under Wave and Current Load," Energies, MDPI, vol. 13(23), pages 1-14, December.
    2. Junhan Li & Bin Zhang & Chao Shen & Xiaoli Fu & Weichao Li, 2021. "Experimental Study on Local Scour Depth around Monopile Foundation in Combined Waves and Current," Sustainability, MDPI, vol. 13(24), pages 1-14, December.
    3. Sudip Basack & Ghritartha Goswami & Zi-Hang Dai & Parinita Baruah, 2022. "Failure-Mechanism and Design Techniques of Offshore Wind Turbine Pile Foundation: Review and Research Directions," Sustainability, MDPI, vol. 14(19), pages 1-20, October.
    4. Zeng, Xinmeng & Shi, Wei & Michailides, Constantine & Zhang, Songhao & Li, Xin, 2021. "Numerical and experimental investigation of breaking wave forces on a monopile-type offshore wind turbine," Renewable Energy, Elsevier, vol. 175(C), pages 501-519.
    5. Zhibin Tu & Jianfeng Yao & Mingfeng Huang & Wenjuan Lou, 2022. "Investigation of Coupling Effects of Wave, Current, and Wind on a Pile Foundation," Sustainability, MDPI, vol. 14(21), pages 1-14, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dianfu Fu & Shuzhao Li & Hui Zhang & Yu Jiang & Run Liu & Chengfeng Li, 2023. "The Influence Depth of Pile Base Resistance in Sand-Layered Clay," Sustainability, MDPI, vol. 15(9), pages 1-14, April.
    2. Xiaoyan Yang & Lixing Wang & Wenbing Wu & Hao Liu & Guosheng Jiang & Kuihua Wang & Guoxiong Mei, 2022. "Vertical Dynamic Impedance of a Viscoelastic Pile in Arbitrarily Layered Soil Based on the Fictitious Soil Pile Model," Energies, MDPI, vol. 15(6), pages 1-21, March.
    3. Hao Liu & Jiaxuan Li & Xiaoyan Yang & Libo Chen & Wenbing Wu & Minjie Wen & Mingjie Jiang & Changjiang Guo, 2022. "Lateral Dynamic Response of Offshore Pipe Piles Considering Effect of Superstructure," Energies, MDPI, vol. 15(18), pages 1-20, September.
    4. Sudip Basack & Ghritartha Goswami & Zi-Hang Dai & Parinita Baruah, 2022. "Failure-Mechanism and Design Techniques of Offshore Wind Turbine Pile Foundation: Review and Research Directions," Sustainability, MDPI, vol. 14(19), pages 1-20, October.
    5. Ying Li & Jinghui Li & Wei Shi & Xin Li & Bin Wang, 2022. "Analysis of the Dynamic Characteristics of the Top Flange Pile Driving Process of a Novel Monopile Foundation without a Transition Section," Sustainability, MDPI, vol. 14(10), pages 1-12, May.
    6. Wenbing Wu & Yunpeng Zhang, 2022. "A Review of Pile Foundations in Viscoelastic Medium: Dynamic Analysis and Wave Propagation Modeling," Energies, MDPI, vol. 15(24), pages 1-24, December.
    7. Noor Amila Wan Abdullah Zawawi & Kamaluddeen Usman Danyaro & M. S. Liew & Lim Eu Shawn, 2023. "Environmental Sustainability and Efficiency of Offshore Platform Decommissioning: A Review," Sustainability, MDPI, vol. 15(17), pages 1-18, August.
    8. Zhang, Zhihao & Kuang, Limin & Han, Zhaolong & Zhou, Dai & Zhao, Yongsheng & Bao, Yan & Duan, Lei & Tu, Jiahuang & Chen, Yaoran & Chen, Mingsheng, 2023. "Comparative analysis of bent and basic winglets on performance improvement of horizontal axis wind turbines," Energy, Elsevier, vol. 281(C).
    9. Sudip Basack & Shantanu Dutta & Dipasri Saha, 2022. "Installation and Performance Study of a Vertical-Axis Wind Turbine Prototype Model," Sustainability, MDPI, vol. 14(23), pages 1-29, December.
    10. Qin, Mengfei & Shi, Wei & Chai, Wei & Fu, Xing & Li, Lin & Li, Xin, 2023. "Extreme structural response prediction and fatigue damage evaluation for large-scale monopile offshore wind turbines subject to typhoon conditions," Renewable Energy, Elsevier, vol. 208(C), pages 450-464.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:129-:d:1010911. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.