IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i23p6431-d457109.html
   My bibliography  Save this article

Numerical Analysis of the Deformation Performance of Monopile under Wave and Current Load

Author

Listed:
  • Libo Chen

    (Engineering Research Center of Rock-Soil Drilling & Excavation and Protection, Ministry of Education, Faculty of Engineering, China University of Geosciences, Wuhan 430074, China)

  • Xiaoyan Yang

    (Engineering Research Center of Rock-Soil Drilling & Excavation and Protection, Ministry of Education, Faculty of Engineering, China University of Geosciences, Wuhan 430074, China)

  • Lichen Li

    (Engineering Research Center of Rock-Soil Drilling & Excavation and Protection, Ministry of Education, Faculty of Engineering, China University of Geosciences, Wuhan 430074, China)

  • Wenbing Wu

    (Engineering Research Center of Rock-Soil Drilling & Excavation and Protection, Ministry of Education, Faculty of Engineering, China University of Geosciences, Wuhan 430074, China
    Research Center of Coastal Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
    Geotechnical Research Centre, Department of Civil and Environmental Engineering, Western University, London, ON N6A 5B9, Canada
    Zhejiang Institute, China University of Geosciences, Hangzhou 311305, China)

  • M. Hesham El Naggar

    (Engineering Research Center of Rock-Soil Drilling & Excavation and Protection, Ministry of Education, Faculty of Engineering, China University of Geosciences, Wuhan 430074, China
    Geotechnical Research Centre, Department of Civil and Environmental Engineering, Western University, London, ON N6A 5B9, Canada)

  • Kuihua Wang

    (Geotechnical Research Centre, Department of Civil and Environmental Engineering, Western University, London, ON N6A 5B9, Canada)

  • Jinyong Chen

    (Engineering Research Center of Rock-Soil Drilling & Excavation and Protection, Ministry of Education, Faculty of Engineering, China University of Geosciences, Wuhan 430074, China)

Abstract

The research on the deformation mechanism of monopile foundation supporting offshore wind turbines is significant to optimize the design of a monopile foundation under wave and current load. In this paper, a three-dimensional wave-pile-soil coupling finite element model is proposed to investigate the deformation mechanism of monopile undercurrent and fifth-order Stokes wave. Different from the conventional assumption that there is no slip at the pile-soil interface, Frictional contact is set to simulate the relative movement between monopile and soil. Numerical results indicate that under extreme environmental conditions, the monopile foundation sways within a certain range and the maximum displacement in the loading direction is 1.3 times the displacement in the reverse direction. A further investigation has been made for a large-diameter pipe pile with various design parameters. The finite element analyses reveal that the most efficient way to reduce the deflection of the pile head is by increasing the embedment depth of the monopile. When the embedment depth is limited, increasing the pile diameter is a more effective way to strengthen the foundation than increasing the wall thickness.

Suggested Citation

  • Libo Chen & Xiaoyan Yang & Lichen Li & Wenbing Wu & M. Hesham El Naggar & Kuihua Wang & Jinyong Chen, 2020. "Numerical Analysis of the Deformation Performance of Monopile under Wave and Current Load," Energies, MDPI, vol. 13(23), pages 1-14, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6431-:d:457109
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/23/6431/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/23/6431/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Breton, Simon-Philippe & Moe, Geir, 2009. "Status, plans and technologies for offshore wind turbines in Europe and North America," Renewable Energy, Elsevier, vol. 34(3), pages 646-654.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yongqing Lai & Li Cai & Xinyun Wu & Bin Wang & Yiyang Hu & Yuwei Liang & Haisheng Zhao & Wei Shi, 2025. "Effect of Combined Wave and Current Loading on the Hydrodynamic Characteristics of Double-Pile Structures in Offshore Wind Turbine Foundations," Energies, MDPI, vol. 18(10), pages 1-17, May.
    2. Sudip Basack & Ghritartha Goswami & Zi-Hang Dai & Parinita Baruah, 2022. "Failure-Mechanism and Design Techniques of Offshore Wind Turbine Pile Foundation: Review and Research Directions," Sustainability, MDPI, vol. 14(19), pages 1-20, October.
    3. Hao Liu & Jiaxuan Li & Xiaoyan Yang & Libo Chen & Wenbing Wu & Minjie Wen & Mingjie Jiang & Changjiang Guo, 2022. "Lateral Dynamic Response of Offshore Pipe Piles Considering Effect of Superstructure," Energies, MDPI, vol. 15(18), pages 1-20, September.
    4. Wenbing Wu & Yunpeng Zhang, 2022. "A Review of Pile Foundations in Viscoelastic Medium: Dynamic Analysis and Wave Propagation Modeling," Energies, MDPI, vol. 15(24), pages 1-24, December.
    5. Xiaoyan Yang & Lixing Wang & Wenbing Wu & Hao Liu & Guosheng Jiang & Kuihua Wang & Guoxiong Mei, 2022. "Vertical Dynamic Impedance of a Viscoelastic Pile in Arbitrarily Layered Soil Based on the Fictitious Soil Pile Model," Energies, MDPI, vol. 15(6), pages 1-21, March.
    6. Shan Liu & Zhenyu Liu, 2022. "Influence of Currents on the Breaking Wave Forces Acting on Monopiles over an Impermeable Slope," Sustainability, MDPI, vol. 15(1), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mostafaeipour, Ali, 2010. "Productivity and development issues of global wind turbine industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1048-1058, April.
    2. Sun, Xiaojing & Huang, Diangui & Wu, Guoqing, 2012. "The current state of offshore wind energy technology development," Energy, Elsevier, vol. 41(1), pages 298-312.
    3. Karimirad, Madjid & Michailides, Constantine, 2015. "V-shaped semisubmersible offshore wind turbine: An alternative concept for offshore wind technology," Renewable Energy, Elsevier, vol. 83(C), pages 126-143.
    4. Dhunny, A.Z. & Timmons, D.S. & Allam, Z. & Lollchund, M.R. & Cunden, T.S.M., 2020. "An economic assessment of near-shore wind farm development using a weather research forecast-based genetic algorithm model," Energy, Elsevier, vol. 201(C).
    5. Campbell, Maria S. & Stehfest, Kilian M. & Votier, Stephen C. & Hall-Spencer, Jason M., 2014. "Mapping fisheries for marine spatial planning: Gear-specific vessel monitoring system (VMS), marine conservation and offshore renewable energy," Marine Policy, Elsevier, vol. 45(C), pages 293-300.
    6. Kaldellis, John K. & Zafirakis, D., 2011. "The wind energy (r)evolution: A short review of a long history," Renewable Energy, Elsevier, vol. 36(7), pages 1887-1901.
    7. Deng, Sijia & Liu, Yingyi & Ning, Dezhi, 2023. "Fully coupled aero-hydrodynamic modelling of floating offshore wind turbines in nonlinear waves using a direct time-domain approach," Renewable Energy, Elsevier, vol. 216(C).
    8. Mostafaeipour, Ali, 2010. "Feasibility study of offshore wind turbine installation in Iran compared with the world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1722-1743, September.
    9. Rippel, Daniel & Jathe, Nicolas & Lütjen, Michael & Szczerbicka, Helena & Freitag, Michael, 2019. "Integrated domain model for operative offshore installation planning," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), Digital Transformation in Maritime and City Logistics: Smart Solutions for Logistics. Proceedings of the Hamburg International Conference of Logistics, volume 28, pages 25-54, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    10. Orlandini, Valentina & Pierobon, Leonardo & Schløer, Signe & De Pascale, Andrea & Haglind, Fredrik, 2016. "Dynamic performance of a novel offshore power system integrated with a wind farm," Energy, Elsevier, vol. 109(C), pages 236-247.
    11. Daniel Rippel & Fatemeh Abasian Foroushani & Michael Lütjen & Michael Freitag, 2021. "A Crew Scheduling Model to Incrementally Optimize Workforce Assignments for Offshore Wind Farm Constructions," Energies, MDPI, vol. 14(21), pages 1-21, October.
    12. Gallagher, Sarah & Tiron, Roxana & Whelan, Eoin & Gleeson, Emily & Dias, Frédéric & McGrath, Ray, 2016. "The nearshore wind and wave energy potential of Ireland: A high resolution assessment of availability and accessibility," Renewable Energy, Elsevier, vol. 88(C), pages 494-516.
    13. Kern, Florian & Smith, Adrian & Shaw, Chris & Raven, Rob & Verhees, Bram, 2014. "From laggard to leader: Explaining offshore wind developments in the UK," Energy Policy, Elsevier, vol. 69(C), pages 635-646.
    14. Muhammad Wajahat Hassan & Muhammad Babar Rasheed & Nadeem Javaid & Waseem Nazar & Muhammad Akmal, 2018. "Co-Optimization of Energy and Reserve Capacity Considering Renewable Energy Unit with Uncertainty," Energies, MDPI, vol. 11(10), pages 1-25, October.
    15. Xu, Jiuping & Li, Li & Zheng, Bobo, 2016. "Wind energy generation technological paradigm diffusion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 436-449.
    16. Khalid, Muhammad & Ahmadi, Abdollah & Savkin, Andrey V. & Agelidis, Vassilios G., 2016. "Minimizing the energy cost for microgrids integrated with renewable energy resources and conventional generation using controlled battery energy storage," Renewable Energy, Elsevier, vol. 97(C), pages 646-655.
    17. Khalid, M. & Savkin, A.V., 2010. "A model predictive control approach to the problem of wind power smoothing with controlled battery storage," Renewable Energy, Elsevier, vol. 35(7), pages 1520-1526.
    18. Mohd Zin, Abdullah Asuhaimi B. & Pesaran H.A., Mahmoud & Khairuddin, Azhar B. & Jahanshaloo, Leila & Shariati, Omid, 2013. "An overview on doubly fed induction generators′ controls and contributions to wind based electricity generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 692-708.
    19. Hinz, Juri & Yee, Jeremy, 2018. "Optimal forward trading and battery control under renewable electricity generation," Journal of Banking & Finance, Elsevier, vol. 95(C), pages 244-254.
    20. Meng Xiong & Feng Gao & Kun Liu & Siyun Chen & Jiaojiao Dong, 2015. "Optimal Real-Time Scheduling for Hybrid Energy Storage Systems and Wind Farms Based on Model Predictive Control," Energies, MDPI, vol. 8(8), pages 1-32, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6431-:d:457109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.