IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i7p2539-d783515.html
   My bibliography  Save this article

Seismic Analysis of 10 MW Offshore Wind Turbine with Large-Diameter Monopile in Consideration of Seabed Liquefaction

Author

Listed:
  • Jian Zhang

    (Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China)

  • Guo-Kai Yuan

    (China Energy Engineering Group, Guangdong Electric Power Design Institute Co., Ltd., Guangzhou 510663, China)

  • Songye Zhu

    (Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China)

  • Quan Gu

    (School of Architecture and Civil Engineering, Xiamen University, Xiamen 361005, China)

  • Shitang Ke

    (Department of Civil Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China)

  • Jinghua Lin

    (China Energy Engineering Group, Guangdong Electric Power Design Institute Co., Ltd., Guangzhou 510663, China)

Abstract

With the increasing construction of large-scale wind turbines in seismically active coastal areas, the survivability of these high-rated-power offshore wind turbines (OWTs) in marine and geological conditions becomes extremely important. Although research on the dynamic behaviors of OWTs under earthquakes has been conducted with consideration of the soil-structure interaction, the attention paid to the impact of earthquake-induced seabed liquefaction on OWTs supported by large-diameter monopiles remains limited. In view of this research gap, this study carries out dynamic analyses of a 10 MW OWT under combined wind, wave, and earthquake loadings. This study uses a pressure-dependent multisurface elastoplastic constitutive model to simulate the soil liquefaction phenomenon. The results indicate that the motion of the large-diameter monopile leads to more extensive soil liquefaction surrounding the monopile, specifically in the zone near the pile toe. Moreover, compared with earthquake loading alone, liquefaction becomes more severe under the coupled wind and earthquake loadings. Accordingly, the dynamic responses of the OWT are apparently amplified, which demonstrates the importance of considering the coupling loadings. Compared with wind loading, the effect of wave loading on the dynamic response and liquefaction potential is relatively insignificant.

Suggested Citation

  • Jian Zhang & Guo-Kai Yuan & Songye Zhu & Quan Gu & Shitang Ke & Jinghua Lin, 2022. "Seismic Analysis of 10 MW Offshore Wind Turbine with Large-Diameter Monopile in Consideration of Seabed Liquefaction," Energies, MDPI, vol. 15(7), pages 1-31, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2539-:d:783515
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/7/2539/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/7/2539/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Xuefei & Yang, Xu & Zeng, Xiangwu, 2017. "Seismic centrifuge modelling of suction bucket foundation for offshore wind turbine," Renewable Energy, Elsevier, vol. 114(PB), pages 1013-1022.
    2. Yu-Kai Wang & Juin-Fu Chai & Yu-Wen Chang & Ti-Ying Huang & Yu-Shu Kuo, 2016. "Development of Seismic Demand for Chang-Bin Offshore Wind Farm in Taiwan Strait," Energies, MDPI, vol. 9(12), pages 1-19, December.
    3. Wang, Xuefei & Zeng, Xiangwu & Li, Xinyao & Li, Jiale, 2020. "Liquefaction characteristics of offshore wind turbine with hybrid monopile foundation via centrifuge modelling," Renewable Energy, Elsevier, vol. 145(C), pages 2358-2372.
    4. Bento, Nuno & Fontes, Margarida, 2019. "Emergence of floating offshore wind energy: Technology and industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 66-82.
    5. Oh, Ki-Yong & Nam, Woochul & Ryu, Moo Sung & Kim, Ji-Young & Epureanu, Bogdan I., 2018. "A review of foundations of offshore wind energy convertors: Current status and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 16-36.
    6. Wu, Xiaoni & Hu, Yu & Li, Ye & Yang, Jian & Duan, Lei & Wang, Tongguang & Adcock, Thomas & Jiang, Zhiyu & Gao, Zhen & Lin, Zhiliang & Borthwick, Alistair & Liao, Shijun, 2019. "Foundations of offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 379-393.
    7. Igwemezie, Victor & Mehmanparast, Ali & Kolios, Athanasios, 2019. "Current trend in offshore wind energy sector and material requirements for fatigue resistance improvement in large wind turbine support structures – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 181-196.
    8. Kim, Dong Hyawn & Lee, Sang Geun & Lee, Il Keun, 2014. "Seismic fragility analysis of 5 MW offshore wind turbine," Renewable Energy, Elsevier, vol. 65(C), pages 250-256.
    9. Negro, Vicente & López-Gutiérrez, José-Santos & Esteban, M. Dolores & Matutano, Clara, 2014. "Uncertainties in the design of support structures and foundations for offshore wind turbines," Renewable Energy, Elsevier, vol. 63(C), pages 125-132.
    10. Yong Wan & Chenqing Fan & Yongshou Dai & Ligang Li & Weifeng Sun & Peng Zhou & Xiaojun Qu, 2018. "Assessment of the Joint Development Potential of Wave and Wind Energy in the South China Sea," Energies, MDPI, vol. 11(2), pages 1-26, February.
    11. Renjie Mo & Haigui Kang & Miao Li & Xuanlie Zhao, 2017. "Seismic Fragility Analysis of Monopile Offshore Wind Turbines under Different Operational Conditions," Energies, MDPI, vol. 10(7), pages 1-22, July.
    12. Li, Xinyao & Zeng, Xiangwu & Yu, Xiong & Wang, Xuefei, 2021. "Seismic response of a novel hybrid foundation for offshore wind turbine by geotechnical centrifuge modeling," Renewable Energy, Elsevier, vol. 172(C), pages 1404-1416.
    13. Watson, Simon & Moro, Alberto & Reis, Vera & Baniotopoulos, Charalampos & Barth, Stephan & Bartoli, Gianni & Bauer, Florian & Boelman, Elisa & Bosse, Dennis & Cherubini, Antonello & Croce, Alessandro , 2019. "Future emerging technologies in the wind power sector: A European perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenjie Guan & Meixia Zhang & Zekun Wang & Guosheng Jiang & Wenqi Liu & Sheng Cao & Chin Jian Leo & Elieen An & Xiaodong Gao & Wenbing Wu, 2022. "Influence of the Three-Dimensional Effect of Pile-Soil System on the Vertical Dynamic Response of Large-Diameter Piles in Low-Strain Integrity Testing," Energies, MDPI, vol. 15(24), pages 1-23, December.
    2. Ramezani, Mahyar & Choe, Do-Eun & Heydarpour, Khashayar & Koo, Bonjun, 2023. "Uncertainty models for the structural design of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Yaohua & Zhang, Puyang & Ding, Hongyan & Le, Conghuan, 2021. "Design and verification of the loading system and boundary conditions for wind turbine foundation model experiment," Renewable Energy, Elsevier, vol. 172(C), pages 16-33.
    2. Wang, L. & Kolios, A. & Liu, X. & Venetsanos, D. & Rui, C., 2022. "Reliability of offshore wind turbine support structures: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    3. Subhamoy Bhattacharya & Suryakanta Biswal & Muhammed Aleem & Sadra Amani & Athul Prabhakaran & Ganga Prakhya & Domenico Lombardi & Harsh K. Mistry, 2021. "Seismic Design of Offshore Wind Turbines: Good, Bad and Unknowns," Energies, MDPI, vol. 14(12), pages 1-27, June.
    4. Alexandre Mathern & Christoph von der Haar & Steffen Marx, 2021. "Concrete Support Structures for Offshore Wind Turbines: Current Status, Challenges, and Future Trends," Energies, MDPI, vol. 14(7), pages 1-31, April.
    5. Sudip Basack & Ghritartha Goswami & Zi-Hang Dai & Parinita Baruah, 2022. "Failure-Mechanism and Design Techniques of Offshore Wind Turbine Pile Foundation: Review and Research Directions," Sustainability, MDPI, vol. 14(19), pages 1-20, October.
    6. Mo, Renjie & Cao, Renjing & Liu, Minghou & Li, Miao, 2021. "Effect of ground motion directionality on seismic dynamic responses of monopile offshore wind turbines," Renewable Energy, Elsevier, vol. 175(C), pages 179-199.
    7. Subbulakshmi, A. & Verma, Mohit & Keerthana, M. & Sasmal, Saptarshi & Harikrishna, P. & Kapuria, Santosh, 2022. "Recent advances in experimental and numerical methods for dynamic analysis of floating offshore wind turbines — An integrated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    8. He, Kunpeng & Ye, Jianhong, 2023. "Seismic dynamics of offshore wind turbine-seabed foundation: Insights from a numerical study," Renewable Energy, Elsevier, vol. 205(C), pages 200-221.
    9. Xiao, Shaohui & Lin, Kun & Liu, Hongjun & Zhou, Annan, 2021. "Performance analysis of monopile-supported wind turbines subjected to wind and operation loads," Renewable Energy, Elsevier, vol. 179(C), pages 842-858.
    10. Yang, Yang & Bashir, Musa & Li, Chun & Michailides, Constantine & Wang, Jin, 2020. "Mitigation of coupled wind-wave-earthquake responses of a 10 MW fixed-bottom offshore wind turbine," Renewable Energy, Elsevier, vol. 157(C), pages 1171-1184.
    11. Wang, Yize & Liu, Zhenqing & Wang, Hao, 2022. "Proposal and layout optimization of a wind-wave hybrid energy system using GPU-accelerated differential evolution algorithm," Energy, Elsevier, vol. 239(PA).
    12. Chenyang Yuan & Yunfei Xie & Jing Li & Weifeng Bai & Haohao Li, 2022. "Influence of the Number of Ground Motions on Fragility Analysis of 5 MW Wind Turbines Subjected to Aerodynamic and Seismic Loads Interaction," Energies, MDPI, vol. 15(6), pages 1-18, March.
    13. Georgios Malliotakis & Panagiotis Alevras & Charalampos Baniotopoulos, 2021. "Recent Advances in Vibration Control Methods for Wind Turbine Towers," Energies, MDPI, vol. 14(22), pages 1-37, November.
    14. He, Kunpeng & Ye, Jianhong, 2023. "Dynamics of offshore wind turbine-seabed foundation under hydrodynamic and aerodynamic loads: A coupled numerical way," Renewable Energy, Elsevier, vol. 202(C), pages 453-469.
    15. Roggenburg, Michael & Esquivel-Puentes, Helber A. & Vacca, Andrea & Bocanegra Evans, Humberto & Garcia-Bravo, Jose M. & Warsinger, David M. & Ivantysynova, Monika & Castillo, Luciano, 2020. "Techno-economic analysis of a hydraulic transmission for floating offshore wind turbines," Renewable Energy, Elsevier, vol. 153(C), pages 1194-1204.
    16. Lee, Yeon-Seung & González, José A. & Lee, Ji Hyun & Kim, Young Il & Park, K.C. & Han, Soonhung, 2016. "Structural topology optimization of the transition piece for an offshore wind turbine with jacket foundation," Renewable Energy, Elsevier, vol. 85(C), pages 1214-1225.
    17. Renjie Mo & Haigui Kang & Miao Li & Xuanlie Zhao, 2017. "Seismic Fragility Analysis of Monopile Offshore Wind Turbines under Different Operational Conditions," Energies, MDPI, vol. 10(7), pages 1-22, July.
    18. Xu, Jiuping & Liu, Tingting, 2020. "Technological paradigm-based approaches towards challenges and policy shifts for sustainable wind energy development," Energy Policy, Elsevier, vol. 142(C).
    19. Majidi Nezhad, Meysam & Neshat, Mehdi & Piras, Giuseppe & Astiaso Garcia, Davide, 2022. "Sites exploring prioritisation of offshore wind energy potential and mapping for wind farms installation: Iranian islands case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    20. Li, Ming & Luo, Haojie & Zhou, Shijie & Senthil Kumar, Gokula Manikandan & Guo, Xinman & Law, Tin Chung & Cao, Sunliang, 2022. "State-of-the-art review of the flexibility and feasibility of emerging offshore and coastal ocean energy technologies in East and Southeast Asia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2539-:d:783515. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.