IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i17p10724-d900363.html
   My bibliography  Save this article

Calculation and Assessment of CO 2e Emissions in Road Freight Transportation: A Greek Case Study

Author

Listed:
  • Anastasios Gialos

    (Department of Financial & Management Engineering, School of Engineering, University of the Aegean, 82100 Chios, Greece)

  • Vasileios Zeimpekis

    (Department of Financial & Management Engineering, School of Engineering, University of the Aegean, 82100 Chios, Greece)

  • Michael Madas

    (Department of Applied Informatics, School of Information Sciences Information Systems and e-Business Laboratory (ISeB), University of Macedonia, 54636 Thessaloniki, Greece)

  • Konstantinos Papageorgiou

    (Department of Maritime Studies, School of Maritime and Industrial Studies, University of Piraeus, 18534 Piraeus, Greece
    Papageorgiou Transport & Logistics (PTL), 47100 Arta, Greece)

Abstract

Road freight transportation is already contributing significantly to global warming, and its emissions are predicted to grow dramatically in the following years. Carbon footprint calculation can be used to assess CO 2e emissions to understand how an organization’s activities impact global sustainability. To this end, the main objective of this paper is initially to assess the impact of Green House Gas (GHG) emissions stemming from road freight transportation. Subsequently, we adopt the EN 16258 standard to calculate the carbon footprint of a truck fleet of a freight transport operator in Greece. Based on the obtained results, we assess the performance of the company’s fleet by adopting relevant sustainability indicators. We also evaluate the use of CNG as an alternative fuel and its impact on CO 2e emissions and operational costs. The paper concludes with a list of additional measures toward further reduction and offsetting of CO 2e emissions.

Suggested Citation

  • Anastasios Gialos & Vasileios Zeimpekis & Michael Madas & Konstantinos Papageorgiou, 2022. "Calculation and Assessment of CO 2e Emissions in Road Freight Transportation: A Greek Case Study," Sustainability, MDPI, vol. 14(17), pages 1-15, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10724-:d:900363
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/17/10724/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/17/10724/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. McKinnon, A.C. & Piecyk, M.I., 2009. "Measurement of CO2 emissions from road freight transport: A review of UK experience," Energy Policy, Elsevier, vol. 37(10), pages 3733-3742, October.
    2. Kellner, Florian, 2016. "Allocating greenhouse gas emissions to shipments in road freight transportation: Suggestions for a global carbon accounting standard," Energy Policy, Elsevier, vol. 98(C), pages 565-575.
    3. Santos, Georgina, 2017. "Road transport and CO2 emissions: What are the challenges?," Transport Policy, Elsevier, vol. 59(C), pages 71-74.
    4. Kellner, Florian & Schneiderbauer, Miriam, 2019. "Further insights into the allocation of greenhouse gas emissions to shipments in road freight transportation: The pollution routing game," European Journal of Operational Research, Elsevier, vol. 278(1), pages 296-313.
    5. Young Yoon & Minyoung Yang & Jinsoo Kim, 2018. "An Analysis of CO 2 Emissions from International Transport and the Driving Forces of Emissions Change," Sustainability, MDPI, vol. 10(5), pages 1-17, May.
    6. Ching-Chih Chang & Po-Chien Huang, 2022. "Carbon footprint of different fuels used in public transportation in Taiwan: a life cycle assessment," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 5811-5825, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rizwan Shoukat, 2023. "Multimodal or intermodal: greenhouse gas emissions in less than container load in China–Pakistan trade," Environment Systems and Decisions, Springer, vol. 43(2), pages 265-280, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Concettina Marino & Cosimo Monterosso & Antonino Nucara & Maria Francesca Panzera & Matilde Pietrafesa, 2020. "Analysis of the Reduction of Pollutant Emissions by the Vehicle Fleet of the City of Reggio Calabria Due to the Introduction of Ecological Vehicles," Sustainability, MDPI, vol. 12(7), pages 1-16, April.
    2. Đurđica Stojanović & Jelena Ivetić & Marko Veličković, 2021. "Assessment of International Trade-Related Transport CO 2 Emissions—A Logistics Responsibility Perspective," Sustainability, MDPI, vol. 13(3), pages 1-15, January.
    3. Zichong Lyu & Dirk Pons & Yilei Zhang, 2023. "Emissions and Total Cost of Ownership for Diesel and Battery Electric Freight Pickup and Delivery Trucks in New Zealand: Implications for Transition," Sustainability, MDPI, vol. 15(10), pages 1-23, May.
    4. Florian Kellner, 2022. "Generating greenhouse gas cutting incentives when allocating carbon dioxide emissions to shipments in road freight transportation," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(3), pages 833-874, September.
    5. Kellner, Florian & Schneiderbauer, Miriam, 2019. "Further insights into the allocation of greenhouse gas emissions to shipments in road freight transportation: The pollution routing game," European Journal of Operational Research, Elsevier, vol. 278(1), pages 296-313.
    6. Ogundele Lasun Tunde & Okunlola Oluyemi Adewole & Mohannad Alobid & István Szűcs & Yacouba Kassouri, 2022. "Sources and Sectoral Trend Analysis of CO 2 Emissions Data in Nigeria Using a Modified Mann-Kendall and Change Point Detection Approaches," Energies, MDPI, vol. 15(3), pages 1-12, January.
    7. Turner, Elizabeth H. & Thompson, Mark A., 2023. "Further evidence on the financial impact of environmental regulations on the trucking industry," Transport Policy, Elsevier, vol. 133(C), pages 134-143.
    8. Zuo, Chengchoa & Birkin, Mark & Clarke, Graham & McEvoy, Fiona & Bloodworth, Andrew, 2018. "Reducing carbon emissions related to the transportation of aggregates: Is road or rail the solution?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 26-38.
    9. Abada, I. & Ehrenmann, A. & Lambin, X., 2017. "On the viability of energy communities," Cambridge Working Papers in Economics 1740, Faculty of Economics, University of Cambridge.
    10. Tseng, Po-Hsing & Lin, Dung-Ying & Chien, Steven, 2014. "Investigating the impact of highway electronic toll collection to the external cost: A case study in Taiwan," Technological Forecasting and Social Change, Elsevier, vol. 86(C), pages 265-272.
    11. Chien-Liang Chiu & I-Fan Hsiao & Lily Chang, 2023. "Overviewing Global Surface Temperature Changes Regarding CO 2 Emission, Population Density, and Energy Consumption in the Industry: Policy Suggestions," Sustainability, MDPI, vol. 15(8), pages 1-16, April.
    12. Xiaoxuan Wei & Meng Ye & Liang Yuan & Wei Bi & Weisheng Lu, 2022. "Analyzing the Freight Characteristics and Carbon Emission of Construction Waste Hauling Trucks: Big Data Analytics of Hong Kong," IJERPH, MDPI, vol. 19(4), pages 1-21, February.
    13. Carmen Callao & M. Pilar Latorre & Margarita Martinez-Núñez, 2021. "Understanding Hazardous Waste Exports for Disposal in Europe: A Contribution to Sustainable Development," Sustainability, MDPI, vol. 13(16), pages 1-14, August.
    14. Palander, Teijo & Haavikko, Hanna & Kärhä, Kalle, 2018. "Towards sustainable wood procurement in forest industry – The energy efficiency of larger and heavier vehicles in Finland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 100-118.
    15. Gustavo Rodrigues de Morais & Yuri Clements Daglia Calil & Gabriel Faria de Oliveira & Rodney Rezende Saldanha & Carlos Andrey Maia, 2023. "A Sustainable Location Model of Transshipment Terminals Applied to the Expansion Strategies of the Soybean Intermodal Transport Network in the State of Mato Grosso, Brazil," Sustainability, MDPI, vol. 15(2), pages 1-27, January.
    16. Ibrahim Abada, Andreas Ehrenmann, and Xavier Lambin, 2020. "On the Viability of Energy Communities," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    17. Hasan Huseyin Coban & Wojciech Lewicki & Ewelina Sendek-Matysiak & Zbigniew Łosiewicz & Wojciech Drożdż & Radosław Miśkiewicz, 2022. "Electric Vehicles and Vehicle–Grid Interaction in the Turkish Electricity System," Energies, MDPI, vol. 15(21), pages 1-19, November.
    18. Alfredo Alvarez-Diazcomas & Adyr A. Estévez-Bén & Juvenal Rodríguez-Reséndiz & Miguel-Angel Martínez-Prado & Roberto V. Carrillo-Serrano & Suresh Thenozhi, 2020. "A Review of Battery Equalizer Circuits for Electric Vehicle Applications," Energies, MDPI, vol. 13(21), pages 1-29, October.
    19. Xin, Yongrong & Ajaz, Tahseen & Shahzad, Mohsin & Luo, Jia, 2023. "How productive capacities influence trade-adjusted resources consumption in China: Testing resource-based EKC," Resources Policy, Elsevier, vol. 81(C).
    20. Astrida Miceikienė & Kristina Gesevičienė & Daiva Rimkuvienė, 2021. "Assessment of the Dependence of GHG Emissions on the Support and Taxes in the EU Countries," Sustainability, MDPI, vol. 13(14), pages 1-15, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10724-:d:900363. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.