IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i9p4673-d541232.html
   My bibliography  Save this article

Modeling the Underlying Drivers of Natural Vegetation Occurrence in West Africa with Binary Logistic Regression Method

Author

Listed:
  • Beatrice Asenso Barnieh

    (State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
    University of Chinese Academy of Sciences, Olympic Campus, Beijing 100101, China)

  • Li Jia

    (State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China)

  • Massimo Menenti

    (State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
    Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevin Weg 1, 2825 CN Delft, The Netherlands)

  • Min Jiang

    (State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China)

  • Jie Zhou

    (Key Laboratory for Geographical Process Analysis & Simulation of Hubei Province, College of Urban and Environmental Sciences, Central China Normal University, Wuhan 430079, China)

  • Yelong Zeng

    (State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
    University of Chinese Academy of Sciences, Olympic Campus, Beijing 100101, China)

  • Ali Bennour

    (State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
    University of Chinese Academy of Sciences, Olympic Campus, Beijing 100101, China)

Abstract

The occurrence of natural vegetation at a given time is determined by interplay of multiple drivers. The effects of several drivers, e.g., geomorphology, topography, climate variability, accessibility, demographic indicators, and changes in human activities on the occurrence of natural vegetation in the severe drought periods and, prior to the year 2000, have been analyzed in West Africa. A binary logistic regression (BLR) model was developed to better understand whether the variability in these drivers over the past years was statistically significant in explaining the occurrence of natural vegetation in the year 2000. Our results showed that multiple drivers explained the occurrence of natural vegetation in West Africa at p < 0.05. The dominant drivers, however, were site-specific. Overall, human influence indicators were the dominant drivers in explaining the occurrence of natural vegetation in the selected hotspots. Human appropriation of net primary productivity (HANPP), which is an indicator of human socio-economic activities, explained the decreased likelihood of natural vegetation occurrence at all the study sites. However, the impacts of the remaining significant drivers on natural vegetation were either positive (increased the probability of occurrence) or negative (decreased the probability of occurrence), depending on the unique environmental and socio-economic conditions of the areas under consideration. The study highlights the significant role human activities play in altering the normal functioning of the ecosystem by means of a statistical model. The research contributes to a better understanding of the relationships and the interactions between multiple drivers and the response of natural vegetation in West Africa. The results are likely to be useful for planning climate change adaptation and sustainable development programs in West Africa.

Suggested Citation

  • Beatrice Asenso Barnieh & Li Jia & Massimo Menenti & Min Jiang & Jie Zhou & Yelong Zeng & Ali Bennour, 2021. "Modeling the Underlying Drivers of Natural Vegetation Occurrence in West Africa with Binary Logistic Regression Method," Sustainability, MDPI, vol. 13(9), pages 1-37, April.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:4673-:d:541232
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/9/4673/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/9/4673/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ewout W. Steyerberg & Marinus J. C. Eijkemans & Frank E. Harrell Jr & J. Dik F. Habbema, 2001. "Prognostic Modeling with Logistic Regression Analysis," Medical Decision Making, , vol. 21(1), pages 45-56, February.
    2. Marc L. Imhoff & Lahouari Bounoua & Taylor Ricketts & Colby Loucks & Robert Harriss & William T. Lawrence, 2004. "Global patterns in human consumption of net primary production," Nature, Nature, vol. 429(6994), pages 870-873, June.
    3. Catherine Linard & Marius Gilbert & Robert W Snow & Abdisalan M Noor & Andrew J Tatem, 2012. "Population Distribution, Settlement Patterns and Accessibility across Africa in 2010," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-8, February.
    4. Chomitz, Kenneth M & Gray, David A, 1996. "Roads, Land Use, and Deforestation: A Spatial Model Applied to Belize," The World Bank Economic Review, World Bank, vol. 10(3), pages 487-512, September.
    5. Beatrice Asenso Barnieh & Li Jia & Massimo Menenti & Jie Zhou & Yelong Zeng, 2020. "Mapping Land Use Land Cover Transitions at Different Spatiotemporal Scales in West Africa," Sustainability, MDPI, vol. 12(20), pages 1-52, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed K. Abd El Aal & Hossam M. GabAllah & Hanaa A. Megahed & Maha K. Selim & Mahmoud A. Hegab & Mohamed E. Fadl & Nazih Y. Rebouh & Heba El-Bagoury, 2024. "Geo-Environmental Risk Assessment of Sand Dunes Encroachment Hazards in Arid Lands Using Machine Learning Techniques," Sustainability, MDPI, vol. 16(24), pages 1-23, December.
    2. Zhao Zhang & Chun-Yan Xiao & Zhi-Guo Zhang, 2023. "Analysis and Empirical Study of Factors Influencing Urban Residents’ Acceptance of Routine Drone Deliveries," Sustainability, MDPI, vol. 15(18), pages 1-27, September.
    3. Vikkram Singh & Joshua Chobotaru, 2022. "Digital Divide: Barriers to Accessing Online Government Services in Canada," Administrative Sciences, MDPI, vol. 12(3), pages 1-12, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. O. Borodina, S. Kyryziuk, V. Yarovyi, Yu. Ermoliev, T. Ermolieva, 2016. "Modeling local land uses under the global climate change," Economy and Forecasting, Valeriy Heyets, issue 1, pages 117-128.
    2. repec:plo:pone00:0107042 is not listed on IDEAS
    3. Maysoon A A Osman & Elfatih M Abdel-Rahman & Joshua Orungo Onono & Lydia A Olaka & Muna M Elhag & Marian Adan & Henri E Z Tonnang, 2023. "Mapping, intensities and future prediction of land use/land cover dynamics using google earth engine and CA- artificial neural network model," PLOS ONE, Public Library of Science, vol. 18(7), pages 1-28, July.
    4. Sarfo, Isaac & Qiao, Jiajun & Yeboah, Emmanuel & Puplampu, Dzifa Adimle & Kwang, Clement & Fynn, Iris Ekua Mensimah & Batame, Michael & Appea, Emmanuella Aboagye & Hagan, Daniel Fiifi Tawia & Ayelazun, 2024. "Meta-analysis of land use systems development in Africa: Trajectories, implications, adaptive capacity, and future dynamics," Land Use Policy, Elsevier, vol. 144(C).
    5. Alejandro López-Feldman, 2012. "Deforestación en México: Un análisis preliminar," Working Papers DTE 527, CIDE, División de Economía.
    6. Kere, Eric Nazindigouba & Choumert, Johanna & Combes Motel, Pascale & Combes, Jean Louis & Santoni, Olivier & Schwartz, Sonia, 2017. "Addressing Contextual and Location Biases in the Assessment of Protected Areas Effectiveness on Deforestation in the Brazilian Amazônia," Ecological Economics, Elsevier, vol. 136(C), pages 148-158.
    7. Suzi Kerr & Joanna Hendy & Shuguang Liu & Alexander S. P. Pfaff, 2004. "Tropical Forest Protection, Uncertainty, and the Environmental Integrity of Carbon Mitigation Policies," Motu Working Papers 04_03, Motu Economic and Public Policy Research.
    8. Allen Blackman & Beatriz Ávalos-Sartorio & Jeffrey Chow, 2012. "Land Cover Change in Agroforestry: Shade Coffee in El Salvador," Land Economics, University of Wisconsin Press, vol. 88(1), pages 75-101.
    9. repec:plo:pmed00:1003003 is not listed on IDEAS
    10. Chakravarty, Shourish & Villoria, Nelson B., 2020. "Estimating the spatially heterogeneous elasticities of land supply to U.S. crop agriculture," Conference papers 333156, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    11. Azqueta, Diego & Sotelsek, Daniel, 2007. "Valuing nature: From environmental impacts to natural capital," Ecological Economics, Elsevier, vol. 63(1), pages 22-30, June.
    12. Alessandro De Pinto & Gerald C. Nelson, 2007. "Modelling Deforestation and Land‐Use Change: Sparse Data Environments," Journal of Agricultural Economics, Wiley Blackwell, vol. 58(3), pages 502-516, September.
    13. repec:osf:africa:t3anz_v1 is not listed on IDEAS
    14. Zack Dorner & Dean Hyslop, 2014. "Modelling Changing Rural Land Use in New Zealand 1997 to 2008 Using a Multinomial Logit Approach," Motu Working Papers 14_12, Motu Economic and Public Policy Research.
    15. repec:plo:pntd00:0002359 is not listed on IDEAS
    16. Tri-Long Nguyen & Géraldine Leguelinel-Blache & Jean-Marie Kinowski & Clarisse Roux-Marson & Marion Rougier & Jessica Spence & Yannick Le Manach & Paul Landais, 2017. "Improving medication safety: Development and impact of a multivariate model-based strategy to target high-risk patients," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-13, February.
    17. Nelson, Gerald C. & Geoghegan, Jacqueline, 2002. "Deforestation and land use change: sparse data environments," Agricultural Economics, Blackwell, vol. 27(3), pages 201-216, November.
    18. Pritchard, Rose & Ryan, Casey M. & Grundy, Isla & van der Horst, Dan, 2018. "Human Appropriation of Net Primary Productivity and Rural Livelihoods: Findings From Six Villages in Zimbabwe," Ecological Economics, Elsevier, vol. 146(C), pages 115-124.
    19. Murphy, Sinnott & Pincetl, Stephanie, 2013. "Zero waste in Los Angeles: Is the emperor wearing any clothes?," Resources, Conservation & Recycling, Elsevier, vol. 81(C), pages 40-51.
    20. Lauk, Christian & Erb, Karl-Heinz, 2009. "Biomass consumed in anthropogenic vegetation fires: Global patterns and processes," Ecological Economics, Elsevier, vol. 69(2), pages 301-309, December.
    21. Oltmer, K. & Nijkamp, P. & Florax, R. & Brouwer, F., 2009. "Sustainability and Agri-Environmental Policy in the European Union: A Meta-Analytic Investigation," Serie Research Memoranda 0025, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    22. Andrew J. Wiltshire & Gillian Kay & Jemma L. Gornall & Richard A. Betts, 2013. "The Impact of Climate, CO 2 and Population on Regional Food and Water Resources in the 2050s," Sustainability, MDPI, vol. 5(5), pages 1-23, May.
    23. D. Woods & A. Cunningham & C. E. Utazi & M. Bondarenko & L. Shengjie & G. E. Rogers & P. Koper & C. W. Ruktanonchai & E. zu Erbach-Schoenberg & A. J. Tatem & J. Steele & A. Sorichetta, 2022. "Exploring methods for mapping seasonal population changes using mobile phone data," Humanities and Social Sciences Communications, Palgrave Macmillan, vol. 9(1), pages 1-17, December.
    24. Gellrich, Mario & Baur, Priska & Robinson, Brett Harvey & Bebi, Peter, 2008. "Combining classification tree analyses with interviews to study why sub-alpine grasslands sometimes revert to forest: A case study from the Swiss Alps," Agricultural Systems, Elsevier, vol. 96(1-3), pages 124-138, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:4673-:d:541232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.