IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v69y2009i2p301-309.html
   My bibliography  Save this article

Biomass consumed in anthropogenic vegetation fires: Global patterns and processes

Author

Listed:
  • Lauk, Christian
  • Erb, Karl-Heinz

Abstract

Human-induced vegetation fires destroy a large amount of biomass each year and thus constitute an important fraction of the human interference with the energy flows of terrestrial ecosystems. This paper presents a quantification of the biomass burned in large-scale as well as small-scale human-induced vegetation fires at the country level for the year 2000. The amount of biomass burned in large scale fires is estimated combining information on the amount of biomass destroyed by large vegetation fires each year, derived by remote sensing, with estimates about the fraction induced by human activities. For biomass flows resulting from shifting cultivation, no comprehensive information is available at the global scale. Therefore, this flow was modelled on the basis of data on the area subjected to shifting cultivation and assumptions about the typical length of the cropping and fallow periods and the amount of biomass destroyed in each rotation cycle. The results show that the amount of biomass consumed in anthropogenic vegetation fires ranges between 3.5 and 3.9Â billion tons dry matter per year (Pg dm/yr), a considerable amount when compared to the global socioeconomic biomass harvest of 12Â Pg dm/yr. One third of the biomass consumed in anthropogenic fires each year, 1.0-1.4Â Pg dm, results from shifting cultivation. Anthropogenic fires are most important in the regions of Sub-Saharan Africa (2202Â Tg dm/yr), Latin America (795Â Tg dm/yr), South-Eastern Asia (336Â Tg dm/yr) and Central Asia (157Â Tg dm/yr), whereas in regions dominated by industrialized countries, anthropogenic vegetation fires play a minor role. Due to the lack of consistent and spatially explicit data for the year 2000, these numbers do not include agricultural residues burned in the field. The inclusion of residue burning in the year 1985 would increase the total biomass consumed by 0.45Â Pg dm to a total of between 4.0 and 4.4Â Pg dm/yr. The paper shows that the current geographic pattern of biomass burning can be explained by a combination of natural factors, such as the type of the potential vegetation, and socioeconomic factors, such as population density and the degree of industrialization of a region, which ultimately determine the application of vegetation fires in land use management. It is expected that the magnitude of anthropogenic vegetation fires will decrease in absolute and relative terms, mainly due to population growth and the diffusion of modern land use technologies, which more and more replace the function of vegetation fires as a land management tool.

Suggested Citation

  • Lauk, Christian & Erb, Karl-Heinz, 2009. "Biomass consumed in anthropogenic vegetation fires: Global patterns and processes," Ecological Economics, Elsevier, vol. 69(2), pages 301-309, December.
  • Handle: RePEc:eee:ecolec:v:69:y:2009:i:2:p:301-309
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921-8009(09)00273-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mark A. Cochrane, 2003. "Fire science for rainforests," Nature, Nature, vol. 421(6926), pages 913-919, February.
    2. Helmut Haberl, 2001. "The Energetic Metabolism of Societies Part I: Accounting Concepts," Journal of Industrial Ecology, Yale University, vol. 5(1), pages 11-33, January.
    3. Marc L. Imhoff & Lahouari Bounoua & Taylor Ricketts & Colby Loucks & Robert Harriss & William T. Lawrence, 2004. "Global patterns in human consumption of net primary production," Nature, Nature, vol. 429(6994), pages 870-873, June.
    4. Krausmann, Fridolin & Erb, Karl-Heinz & Gingrich, Simone & Lauk, Christian & Haberl, Helmut, 2008. "Global patterns of socioeconomic biomass flows in the year 2000: A comprehensive assessment of supply, consumption and constraints," Ecological Economics, Elsevier, vol. 65(3), pages 471-487, April.
    5. Erb, Karl-Heinz & Krausmann, Fridolin & Gaube, Veronika & Gingrich, Simone & Bondeau, Alberte & Fischer-Kowalski, Marina & Haberl, Helmut, 2009. "Analyzing the global human appropriation of net primary production -- processes, trajectories, implications. An introduction," Ecological Economics, Elsevier, vol. 69(2), pages 250-259, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fetzel, Tamara & Gradwohl, Markus & Erb, Karl-Heinz, 2014. "Conversion, intensification, and abandonment: A human appropriation of net primary production approach to analyze historic land-use dynamics in New Zealand 1860–2005," Ecological Economics, Elsevier, vol. 97(C), pages 201-208.
    2. Erb, Karl-Heinz & Krausmann, Fridolin & Gaube, Veronika & Gingrich, Simone & Bondeau, Alberte & Fischer-Kowalski, Marina & Haberl, Helmut, 2009. "Analyzing the global human appropriation of net primary production -- processes, trajectories, implications. An introduction," Ecological Economics, Elsevier, vol. 69(2), pages 250-259, December.
    3. Haberl, Helmut & Kastner, Thomas & Schaffartzik, Anke & Ludwiczek, Nikolaus & Erb, Karl-Heinz, 2012. "Global effects of national biomass production and consumption: Austria's embodied HANPP related to agricultural biomass in the year 2000," Ecological Economics, Elsevier, vol. 84(C), pages 66-73.
    4. repec:idb:brikps:64718 is not listed on IDEAS
    5. Kastner, Thomas, 2009. "Trajectories in human domination of ecosystems: Human appropriation of net primary production in the Philippines during the 20th century," Ecological Economics, Elsevier, vol. 69(2), pages 260-269, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kohlheb, Norbert & Krausmann, Fridolin, 2009. "Land use change, biomass production and HANPP: The case of Hungary 1961-2005," Ecological Economics, Elsevier, vol. 69(2), pages 292-300, December.
    2. Erb, Karl-Heinz & Krausmann, Fridolin & Lucht, Wolfgang & Haberl, Helmut, 2009. "Embodied HANPP: Mapping the spatial disconnect between global biomass production and consumption," Ecological Economics, Elsevier, vol. 69(2), pages 328-334, December.
    3. Haberl, Helmut & Kastner, Thomas & Schaffartzik, Anke & Ludwiczek, Nikolaus & Erb, Karl-Heinz, 2012. "Global effects of national biomass production and consumption: Austria's embodied HANPP related to agricultural biomass in the year 2000," Ecological Economics, Elsevier, vol. 84(C), pages 66-73.
    4. Bais, Anna Liza S. & Lauk, Christian & Kastner, Thomas & Erb, Karlheinz, 2015. "Global patterns and trends of wood harvest and use between 1990 and 2010," Ecological Economics, Elsevier, vol. 119(C), pages 326-337.
    5. Casas-Ledón, Yannay & Andrade, Cinthya & Salazar, Camila & Martínez-Martínez, Yenisleidy & Aguayo, Mauricio, 2023. "Understanding the dynamics of human appropriation on ecosystems via an exergy-based net primary productivity indicator: A case study in south-central Chile," Ecological Economics, Elsevier, vol. 210(C).
    6. Chen, Aifang & Li, Ruiyun & Wang, Honglin & He, Bin, 2015. "Quantitative assessment of human appropriation of aboveground net primary production in China," Ecological Modelling, Elsevier, vol. 312(C), pages 54-60.
    7. Kastner, Thomas, 2009. "Trajectories in human domination of ecosystems: Human appropriation of net primary production in the Philippines during the 20th century," Ecological Economics, Elsevier, vol. 69(2), pages 260-269, December.
    8. Fridolin Krausmann & Marina Fischer-Kowalski & Heinz Schandl & Nina Eisenmenger, 2008. "The Global Sociometabolic Transition," Journal of Industrial Ecology, Yale University, vol. 12(5-6), pages 637-656, October.
    9. Nina Eisenmenger & Stefan Giljum & Stephan Lutter & Alexandra Marques & Michaela C. Theurl & Henrique M. Pereira & Arnold Tukker, 2016. "Towards a Conceptual Framework for Social-Ecological Systems Integrating Biodiversity and Ecosystem Services with Resource Efficiency Indicators," Sustainability, MDPI, vol. 8(3), pages 1-15, February.
    10. Musel, Annabella, 2009. "Human appropriation of net primary production in the United Kingdom, 1800-2000: Changes in society's impact on ecological energy flows during the agrarian-industrial transition," Ecological Economics, Elsevier, vol. 69(2), pages 270-281, December.
    11. Krausmann, Fridolin & Erb, Karl-Heinz & Gingrich, Simone & Lauk, Christian & Haberl, Helmut, 2008. "Global patterns of socioeconomic biomass flows in the year 2000: A comprehensive assessment of supply, consumption and constraints," Ecological Economics, Elsevier, vol. 65(3), pages 471-487, April.
    12. Pelletier, N. & Lammers, P. & Stender, D. & Pirog, R., 2010. "Life cycle assessment of high- and low-profitability commodity and deep-bedded niche swine production systems in the Upper Midwestern United States," Agricultural Systems, Elsevier, vol. 103(9), pages 599-608, November.
    13. Fetzel, Tamara & Gradwohl, Markus & Erb, Karl-Heinz, 2014. "Conversion, intensification, and abandonment: A human appropriation of net primary production approach to analyze historic land-use dynamics in New Zealand 1860–2005," Ecological Economics, Elsevier, vol. 97(C), pages 201-208.
    14. Krausmann, Fridolin & Gingrich, Simone & Haberl, Helmut & Erb, Karl-Heinz & Musel, Annabella & Kastner, Thomas & Kohlheb, Norbert & Niedertscheider, Maria & Schwarzlmüller, Elmar, 2012. "Long-term trajectories of the human appropriation of net primary production: Lessons from six national case studies," Ecological Economics, Elsevier, vol. 77(C), pages 129-138.
    15. Suman Paudel & Gustavo A. Ovando-Montejo & Christopher L. Lant, 2021. "Human Appropriation of Net Primary Production: From a Planet to a Pixel," Sustainability, MDPI, vol. 13(15), pages 1-12, August.
    16. Erb, Karl-Heinz & Haberl, Helmut & Plutzar, Christoph, 2012. "Dependency of global primary bioenergy crop potentials in 2050 on food systems, yields, biodiversity conservation and political stability," Energy Policy, Elsevier, vol. 47(C), pages 260-269.
    17. Alexander Urrego-Mesa & Juan Infante-Amate & Enric Tello, 2018. "Pastures and Cash Crops: Biomass Flows in the Socio-Metabolic Transition of Twentieth-Century Colombian Agriculture," Sustainability, MDPI, vol. 11(1), pages 1-28, December.
    18. Niedertscheider, Maria & Kuemmerle, Tobias & Müller, Daniel & Erb, Karl-Heinz, 2014. "Exploring the effects of drastic institutional and socio-economic changes on land system dynamics in Germany between 1883 and 2007," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 28, pages 98-108.
    19. Soto, David & Infante-Amate, Juan & Guzmán, Gloria I. & Cid, Antonio & Aguilera, Eduardo & García, Roberto & González de Molina, Manuel, 2016. "The social metabolism of biomass in Spain, 1900–2008: From food to feed-oriented changes in the agro-ecosystems," Ecological Economics, Elsevier, vol. 128(C), pages 130-138.
    20. Erb, Karl-Heinz & Krausmann, Fridolin & Gaube, Veronika & Gingrich, Simone & Bondeau, Alberte & Fischer-Kowalski, Marina & Haberl, Helmut, 2009. "Analyzing the global human appropriation of net primary production -- processes, trajectories, implications. An introduction," Ecological Economics, Elsevier, vol. 69(2), pages 250-259, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:69:y:2009:i:2:p:301-309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.