IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i5p2615-d508341.html
   My bibliography  Save this article

Evaluation and Selection of Integrated Energy System Construction Scheme Equipped with Smart Energy Management and Control Platform Using Single-Valued Neutrosophic Numbers

Author

Listed:
  • Junqing Wang

    (College of Economics and Management, Shanghai University of Electric Power, Shanghai 200090, China)

  • Wenhui Zhao

    (College of Economics and Management, Shanghai University of Electric Power, Shanghai 200090, China)

  • Lu Qiu

    (Jinhua Electric Power Design Institute Co., Ltd., Jinhua 321016, China)

  • Puyu Yuan

    (College of Science, Shenyang Ligong University, Shenyang 110159, China)

Abstract

Since application of integrated energy systems (IESs) has formed a markedly increasing trend recently, selecting an appropriate integrated energy system construction scheme becomes essential to the energy supplier. This paper aims to develop a multi-criteria decision-making model for the evaluation and selection of an IES construction scheme equipped with smart energy management and control platform. Firstly, a comprehensive evaluation criteria system including economy, energy, environment, technology and service is established. The evaluation criteria system is divided into quantitative criteria denoted by interval numbers and qualitative criteria. Secondly, single-valued neutrosophic numbers are adopted to denote the qualitative criteria in the evaluation criteria system. Thirdly, in order to accommodate mixed data types consisting of both interval numbers and single-valued neutrosophic numbers, the TOPSIS (Technique for Order Preference by Similarity to an Ideal Solution) method is extended into a three-stage technique by introducing a fusion coefficient μ . Then, a real case in China is evaluated through applying the proposed method. Furthermore, a comprehensive discussion is made to analyze the evaluation result and verify the reliability and stability of the method. In short, this study provides a useful tool for the energy supplier to evaluate and select a preferred IES construction scheme.

Suggested Citation

  • Junqing Wang & Wenhui Zhao & Lu Qiu & Puyu Yuan, 2021. "Evaluation and Selection of Integrated Energy System Construction Scheme Equipped with Smart Energy Management and Control Platform Using Single-Valued Neutrosophic Numbers," Sustainability, MDPI, vol. 13(5), pages 1-24, March.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2615-:d:508341
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/5/2615/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/5/2615/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Kun & Ding, Yan & Zhu, Neng & Yang, Fan & Wang, Qiaochu, 2018. "Multi-criteria integrated evaluation of distributed energy system for community energy planning based on improved grey incidence approach: A case study in Tianjin," Applied Energy, Elsevier, vol. 229(C), pages 352-363.
    2. Jing, Z.X. & Jiang, X.S. & Wu, Q.H. & Tang, W.H. & Hua, B., 2014. "Modelling and optimal operation of a small-scale integrated energy based district heating and cooling system," Energy, Elsevier, vol. 73(C), pages 399-415.
    3. Edmundas Kazimieras Zavadskas & Romualdas Baušys & Marius Lazauskas, 2015. "Sustainable Assessment of Alternative Sites for the Construction of a Waste Incineration Plant by Applying WASPAS Method with Single-Valued Neutrosophic Set," Sustainability, MDPI, vol. 7(12), pages 1-14, December.
    4. Bao, Xiongjiantao & Zhao, Wenhui & Wang, Xiaomei & Tan, Zhongfu, 2019. "Impact of policy mix concerning renewable portfolio standards and emissions trading on electricity market," Renewable Energy, Elsevier, vol. 135(C), pages 761-774.
    5. Wang, Chengshan & Lv, Chaoxian & Li, Peng & Song, Guanyu & Li, Shuquan & Xu, Xiandong & Wu, Jianzhong, 2018. "Modeling and optimal operation of community integrated energy systems: A case study from China," Applied Energy, Elsevier, vol. 230(C), pages 1242-1254.
    6. Fernández-Guillamón, Ana & Gómez-Lázaro, Emilio & Muljadi, Eduard & Molina-García, Ángel, 2019. "Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    7. York, Richard & Rosa, Eugene A. & Dietz, Thomas, 2003. "STIRPAT, IPAT and ImPACT: analytic tools for unpacking the driving forces of environmental impacts," Ecological Economics, Elsevier, vol. 46(3), pages 351-365, October.
    8. Bilal Naji Alhasnawi & Basil H. Jasim & Maria Dolores Esteban & Josep M. Guerrero, 2020. "A Novel Smart Energy Management as a Service over a Cloud Computing Platform for Nanogrid Appliances," Sustainability, MDPI, vol. 12(22), pages 1-47, November.
    9. Yue, Ting & Long, Ruyin & Chen, Hong & Zhao, Xin, 2013. "The optimal CO2 emissions reduction path in Jiangsu province: An expanded IPAT approach," Applied Energy, Elsevier, vol. 112(C), pages 1510-1517.
    10. Hawkes, A.D. & Leach, M.A., 2009. "Modelling high level system design and unit commitment for a microgrid," Applied Energy, Elsevier, vol. 86(7-8), pages 1253-1265, July.
    11. Chauhan, Anurag & Saini, R.P., 2014. "A review on Integrated Renewable Energy System based power generation for stand-alone applications: Configurations, storage options, sizing methodologies and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 99-120.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Dong & Geng, Yong & Pan, Hengyu, 2021. "Whether natural gas consumption bring double dividends of economic growth and carbon dioxide emissions reduction in China?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    2. Weitzel, Timm & Glock, Christoph H., 2018. "Energy management for stationary electric energy storage systems: A systematic literature review," European Journal of Operational Research, Elsevier, vol. 264(2), pages 582-606.
    3. Chen, Kunlun & Wang, Xu & Li, Dan & Li, Zhaohua, 2015. "Driving force of the morphological change of the urban lake ecosystem: A case study of Wuhan, 1990–2013," Ecological Modelling, Elsevier, vol. 318(C), pages 204-209.
    4. Walden, Jasper V.M. & Bähr, Martin & Glade, Anselm & Gollasch, Jens & Tran, A. Phong & Lorenz, Tom, 2023. "Nonlinear operational optimization of an industrial power-to-heat system with a high temperature heat pump, a thermal energy storage and wind energy," Applied Energy, Elsevier, vol. 344(C).
    5. Bo Li & Xuejing Liu & Zhenhong Li, 2015. "Using the STIRPAT model to explore the factors driving regional CO 2 emissions: a case of Tianjin, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1667-1685, April.
    6. Huang, Yuan & Yu, Qiang & Wang, Ruirui, 2021. "Driving factors and decoupling effect of carbon footprint pressure in China: Based on net primary production," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    7. Huang, Junbing & Li, Xinghao & Wang, Yajun & Lei, Hongyan, 2021. "The effect of energy patents on China's carbon emissions: Evidence from the STIRPAT model," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    8. Jaruwan Chontanawat, 2019. "Driving Forces of Energy-Related CO 2 Emissions Based on Expanded IPAT Decomposition Analysis: Evidence from ASEAN and Four Selected Countries," Energies, MDPI, vol. 12(4), pages 1-23, February.
    9. Haibin Cao & Peng Jiang & Ming Zeng, 2021. "A Novel Comprehensive Benefit Evaluation of IEGES Based on the TOPSIS Optimized by MEE Method," Energies, MDPI, vol. 14(3), pages 1-19, February.
    10. Chen, Xiaofei & Xiao, Jinmei & Yuan, Jiaqi & Xiao, Ziwei & Gang, Wenjie, 2021. "Application and performance analysis of 100% renewable energy systems serving low-density communities," Renewable Energy, Elsevier, vol. 176(C), pages 433-446.
    11. Rajanna, S. & Saini, R.P., 2016. "Modeling of integrated renewable energy system for electrification of a remote area in India," Renewable Energy, Elsevier, vol. 90(C), pages 175-187.
    12. Claudia García-García & Catalina B. García-García & Román Salmerón, 2021. "Confronting collinearity in environmental regression models: evidence from world data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 895-926, September.
    13. Shi, Changfeng & Zhi, Jiaqi & Yao, Xiao & Zhang, Hong & Yu, Yue & Zeng, Qingshun & Li, Luji & Zhang, Yuxi, 2023. "How can China achieve the 2030 carbon peak goal—a crossover analysis based on low-carbon economics and deep learning," Energy, Elsevier, vol. 269(C).
    14. Ren, Siyu & Hao, Yu & Xu, Lu & Wu, Haitao & Ba, Ning, 2021. "Digitalization and energy: How does internet development affect China's energy consumption?," Energy Economics, Elsevier, vol. 98(C).
    15. Qian, Jiaxin & Wu, Jiahui & Yao, Lei & Mahmut, Saniye & Zhang, Qiang, 2021. "Comprehensive performance evaluation of Wind-Solar-CCHP system based on emergy analysis and multi-objective decision method," Energy, Elsevier, vol. 230(C).
    16. Fan, Fei & Dai, Shangze & Yang, Bo & Ke, Haiqian, 2023. "Urban density, directed technological change, and carbon intensity: An empirical study based on Chinese cities," Technology in Society, Elsevier, vol. 72(C).
    17. Nicole Grunewald & Inmaculada Martínez-Zarzoso, 2009. "Driving Factors of Carbon Dioxide Emissions and the Impact from Kyoto Protocol," Ibero America Institute for Econ. Research (IAI) Discussion Papers 190, Ibero-America Institute for Economic Research.
    18. Juan Antonio Duro & Jordi Teixidó-Figueras & Emilio Padilla, 2017. "The Causal Factors of International Inequality in $$\hbox {CO}_{2}$$ CO 2 Emissions Per Capita: A Regression-Based Inequality Decomposition Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(4), pages 683-700, August.
    19. Lei Gao & Taowu Pei & Jingran Zhang & Yu Tian, 2022. "The “Pollution Halo” Effect of FDI: Evidence from the Chinese Sichuan–Chongqing Urban Agglomeration," IJERPH, MDPI, vol. 19(19), pages 1-17, September.
    20. Saikku, Laura & Rautiainen, Aapo & Kauppi, Pekka E., 2008. "The sustainability challenge of meeting carbon dioxide targets in Europe by 2020," Energy Policy, Elsevier, vol. 36(2), pages 730-742, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2615-:d:508341. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.