IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v176y2021icp433-446.html
   My bibliography  Save this article

Application and performance analysis of 100% renewable energy systems serving low-density communities

Author

Listed:
  • Chen, Xiaofei
  • Xiao, Jinmei
  • Yuan, Jiaqi
  • Xiao, Ziwei
  • Gang, Wenjie

Abstract

Distributed energy systems are becoming increasingly popular worldwide. The 100% renewable energy system can be an important energy supply alternative to reduce the carbon emissions and address energy shortage, especially for remote areas. However, the performance of 100% renewable energy system (RES) at community level needs further detailed analysis, which is affected by the climates, availability of renewable energy and local energy markets. This paper proposes a design optimization framework of 100% renewable energy systems for low-density communities and investigates the system performance. To investigate the integration and performance of 100% RES, thirty typical cities located in different regions of China were chosen considering different climates, geographical features, and renewable energy distributions. By taking the economic performance as the optimization objective, the optimal design for the 100% RES is obtained, and the energy and economic performance is analyzed. Results show that, under the current energy market conditions, the 100% RES is feasible for low-density communities in most regions of China. The payback periods of the systems in most cities are less than six years. When the cost of PV is reduced by half considering future technological developments, the payback period of a 100% RES can be reduced by 30%–60%. This paper would provide design suggestions and application recommendations in regard to promoting 100% RES in China.

Suggested Citation

  • Chen, Xiaofei & Xiao, Jinmei & Yuan, Jiaqi & Xiao, Ziwei & Gang, Wenjie, 2021. "Application and performance analysis of 100% renewable energy systems serving low-density communities," Renewable Energy, Elsevier, vol. 176(C), pages 433-446.
  • Handle: RePEc:eee:renene:v:176:y:2021:i:c:p:433-446
    DOI: 10.1016/j.renene.2021.05.117
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121008004
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.05.117?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Kun & Ding, Yan & Zhu, Neng & Yang, Fan & Wang, Qiaochu, 2018. "Multi-criteria integrated evaluation of distributed energy system for community energy planning based on improved grey incidence approach: A case study in Tianjin," Applied Energy, Elsevier, vol. 229(C), pages 352-363.
    2. Anoune, Kamal & Bouya, Mohsine & Astito, Abdelali & Abdellah, Abdellatif Ben, 2018. "Sizing methods and optimization techniques for PV-wind based hybrid renewable energy system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 652-673.
    3. Heard, B.P. & Brook, B.W. & Wigley, T.M.L. & Bradshaw, C.J.A., 2017. "Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1122-1133.
    4. Nunes, L.J.R. & Causer, T.P. & Ciolkosz, D., 2020. "Biomass for energy: A review on supply chain management models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    5. Comello, Stephen & Reichelstein, Stefan J. & Sahoo, Anshuman, 2018. "The Road ahead for Solar PV Power," Research Papers 3620, Stanford University, Graduate School of Business.
    6. Wang, Jiangfeng & Dai, Yiping & Gao, Lin & Ma, Shaolin, 2009. "A new combined cooling, heating and power system driven by solar energy," Renewable Energy, Elsevier, vol. 34(12), pages 2780-2788.
    7. Child, Michael & Breyer, Christian, 2016. "Vision and initial feasibility analysis of a recarbonised Finnish energy system for 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 517-536.
    8. Rafique, M. Mujahid & Rehman, S. & Alhems, Luai M., 2018. "Developing zero energy and sustainable villages – A case study for communities of the future," Renewable Energy, Elsevier, vol. 127(C), pages 565-574.
    9. Connolly, D. & Lund, H. & Mathiesen, B.V., 2016. "Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1634-1653.
    10. Dawoud, Samir M. & Lin, Xiangning & Okba, Merfat I., 2018. "Hybrid renewable microgrid optimization techniques: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2039-2052.
    11. Sokolnikova, P. & Lombardi, P. & Arendarski, B. & Suslov, K. & Pantaleo, A.M. & Kranhold, M. & Komarnicki, P., 2020. "Net-zero multi-energy systems for Siberian rural communities: A methodology to size thermal and electric storage units," Renewable Energy, Elsevier, vol. 155(C), pages 979-989.
    12. Hans Christian Gils & Sonja Simon & Rafael Soria, 2017. "100% Renewable Energy Supply for Brazil—The Role of Sector Coupling and Regional Development," Energies, MDPI, vol. 10(11), pages 1-22, November.
    13. Fernández-Guillamón, Ana & Gómez-Lázaro, Emilio & Muljadi, Eduard & Molina-García, Ángel, 2019. "Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    14. Li, Bei & Miao, Hongzhi & Li, Jiangchen, 2021. "Multiple hydrogen-based hybrid storage systems operation for microgrids: A combined TOPSIS and model predictive control methodology," Applied Energy, Elsevier, vol. 283(C).
    15. Diesendorf, Mark & Elliston, Ben, 2018. "The feasibility of 100% renewable electricity systems: A response to critics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 318-330.
    16. Han, Jie & Ouyang, Leixin & Xu, Yuzhen & Zeng, Rong & Kang, Shushuo & Zhang, Guoqiang, 2016. "Current status of distributed energy system in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 288-297.
    17. Comello, Stephen & Reichelstein, Stefan & Sahoo, Anshuman, 2018. "The road ahead for solar PV power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 744-756.
    18. Headley, Alexander J. & Copp, David A., 2020. "Energy storage sizing for grid compatibility of intermittent renewable resources: A California case study," Energy, Elsevier, vol. 198(C).
    19. Zhou, Daqing & Deng, Zhiqun (Daniel), 2017. "Ultra-low-head hydroelectric technology: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 23-30.
    20. Hansen, Kenneth & Mathiesen, Brian Vad & Skov, Iva Ridjan, 2019. "Full energy system transition towards 100% renewable energy in Germany in 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 1-13.
    21. Zhao, Pan & Wang, Jiangfeng & Dai, Yiping, 2015. "Capacity allocation of a hybrid energy storage system for power system peak shaving at high wind power penetration level," Renewable Energy, Elsevier, vol. 75(C), pages 541-549.
    22. Romero, Alberto & Millar, Dean & Carvalho, Monica & Abrahão, Raphael, 2020. "100% renewable fueled mine," Energy, Elsevier, vol. 205(C).
    23. Anderson, Austin & Rezaie, Behnaz, 2019. "Geothermal technology: Trends and potential role in a sustainable future," Applied Energy, Elsevier, vol. 248(C), pages 18-34.
    24. Lund, H. & Mathiesen, B.V., 2009. "Energy system analysis of 100% renewable energy systems—The case of Denmark in years 2030 and 2050," Energy, Elsevier, vol. 34(5), pages 524-531.
    25. Abdmouleh, Zeineb & Gastli, Adel & Ben-Brahim, Lazhar & Haouari, Mohamed & Al-Emadi, Nasser Ahmed, 2017. "Review of optimization techniques applied for the integration of distributed generation from renewable energy sources," Renewable Energy, Elsevier, vol. 113(C), pages 266-280.
    26. Mason, I.G. & Page, S.C. & Williamson, A.G., 2010. "A 100% renewable electricity generation system for New Zealand utilising hydro, wind, geothermal and biomass resources," Energy Policy, Elsevier, vol. 38(8), pages 3973-3984, August.
    27. De Rosa, Luca & Castro, Rui, 2020. "Forecasting and assessment of the 2030 australian electricity mix paths towards energy transition," Energy, Elsevier, vol. 205(C).
    28. Guo, Shaopeng & Liu, Qibin & Sun, Jie & Jin, Hongguang, 2018. "A review on the utilization of hybrid renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1121-1147.
    29. Thellufsen, J.Z. & Lund, H. & Sorknæs, P. & Østergaard, P.A. & Chang, M. & Drysdale, D. & Nielsen, S. & Djørup, S.R. & Sperling, K., 2020. "Smart energy cities in a 100% renewable energy context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    30. Esteban, Miguel & Portugal-Pereira, Joana & Mclellan, Benjamin C. & Bricker, Jeremy & Farzaneh, Hooman & Djalilova, Nigora & Ishihara, Keiichi N. & Takagi, Hiroshi & Roeber, Volker, 2018. "100% renewable energy system in Japan: Smoothening and ancillary services," Applied Energy, Elsevier, vol. 224(C), pages 698-707.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Takele Ferede Agajie & Armand Fopah-Lele & Isaac Amoussou & Ahmed Ali & Baseem Khan & Emmanuel Tanyi, 2023. "Optimal Design and Mathematical Modeling of Hybrid Solar PV–Biogas Generator with Energy Storage Power Generation System in Multi-Objective Function Cases," Sustainability, MDPI, vol. 15(10), pages 1-26, May.
    2. Mehmet Seren Korkmaz & Emir Toker & Ahmet Duran Şahin, 2023. "Comprehensive Analysis of Extreme Meteorological Conditions for the Safety and Reliability of Floating Photovoltaic Systems: A Case on the Mediterranean Coast," Sustainability, MDPI, vol. 15(19), pages 1-26, September.
    3. Zhang, Zhenying & Gang, Wenjie & Zhang, Ying & Yuan, Jiaqi, 2023. "Performance analysis of zero-emission integrated energy system for low-density residential building clusters," Renewable Energy, Elsevier, vol. 219(P1).
    4. Wu, Xiong & Cao, Binrui & Liu, Bingwen & Zhang, Ziyu & Wang, Xiuli, 2023. "Capacity planning of carbon-free microgrid with hydrogen storage considering robust short-term off-grid operation," Renewable Energy, Elsevier, vol. 202(C), pages 242-254.
    5. Fu, Xiaowei & Lei, Yuan & Xiao, Yao & Wang, Jiliang & Zhou, Shiyi & Lei, Jingxin, 2021. "Graft poly(ethylene glycol)-based thermosetting phase change materials networks with ultrahigh encapsulation fraction and latent heat efficiency," Renewable Energy, Elsevier, vol. 179(C), pages 1076-1084.
    6. Zaixun Ling & Yibo Cui & Jingwen Zheng & Yu Guo & Wanli Cai & Xiaofei Chen & Jiaqi Yuan & Wenjie Gang, 2021. "Design Optimization and Comparative Analysis of 100% Renewable Energy Systems for Residential Communities in Typical Areas of China When Considering Environmental and Economic Performance," Sustainability, MDPI, vol. 13(19), pages 1-24, September.
    7. Kalavala Shivaprakash Srivishnu & Prasutha Rani Markapudi & Senthilarasu Sundaram & Lingamallu Giribabu, 2023. "Semitransparent Perovskite Solar Cells for Building Integrated Photovoltaics: Recent Advances," Energies, MDPI, vol. 16(2), pages 1-25, January.
    8. Kachirayil, Febin & Weinand, Jann Michael & Scheller, Fabian & McKenna, Russell, 2022. "Reviewing local and integrated energy system models: insights into flexibility and robustness challenges," Applied Energy, Elsevier, vol. 324(C).
    9. Zhou, Yuan & Wang, Jiangjiang & Li, Yuxin & Wei, Changqi, 2023. "A collaborative management strategy for multi-objective optimization of sustainable distributed energy system considering cloud energy storage," Energy, Elsevier, vol. 280(C).
    10. Tariq, Shahzeb & Safder, Usman & Yoo, ChangKyoo, 2022. "Exergy-based weighted optimization and smart decision-making for renewable energy systems considering economics, reliability, risk, and environmental assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    11. Daniel Icaza-Alvarez & Nestor Daniel Galan-Hernandez & Eber Enrique Orozco-Guillen & Francisco Jurado, 2023. "Smart Energy Planning in the Midst of a Technological and Political Change towards a 100% Renewable System in Mexico by 2050," Energies, MDPI, vol. 16(20), pages 1-26, October.
    12. Brumana, Giovanni & Franchini, Giuseppe & Ghirardi, Elisa & Perdichizzi, Antonio, 2022. "Techno-economic optimization of hybrid power generation systems: A renewables community case study," Energy, Elsevier, vol. 246(C).
    13. Ram, Manish & Gulagi, Ashish & Aghahosseini, Arman & Bogdanov, Dmitrii & Breyer, Christian, 2022. "Energy transition in megacities towards 100% renewable energy: A case for Delhi," Renewable Energy, Elsevier, vol. 195(C), pages 578-589.
    14. Kılkış, Şiir, 2023. "Integrated urban scenarios of emissions, land use efficiency and benchmarking for climate neutrality and sustainability," Energy, Elsevier, vol. 285(C).
    15. Sima, Catalina Alexandra & Popescu, Claudia Laurenta & Popescu, Mihai Octavian & Roscia, Mariacristina & Seritan, George & Panait, Cornel, 2022. "Techno-economic assessment of university energy communities with on/off microgrid," Renewable Energy, Elsevier, vol. 193(C), pages 538-553.
    16. Joseph Akpan & Oludolapo Olanrewaju, 2023. "Towards a Common Methodology and Modelling Tool for 100% Renewable Energy Analysis: A Review," Energies, MDPI, vol. 16(18), pages 1-42, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    2. Maruf, Md. Nasimul Islam, 2021. "Open model-based analysis of a 100% renewable and sector-coupled energy system–The case of Germany in 2050," Applied Energy, Elsevier, vol. 288(C).
    3. Zaixun Ling & Yibo Cui & Jingwen Zheng & Yu Guo & Wanli Cai & Xiaofei Chen & Jiaqi Yuan & Wenjie Gang, 2021. "Design Optimization and Comparative Analysis of 100% Renewable Energy Systems for Residential Communities in Typical Areas of China When Considering Environmental and Economic Performance," Sustainability, MDPI, vol. 13(19), pages 1-24, September.
    4. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    5. Vaiaso, T.V. Jr. & Jack, M.W., 2021. "Quantifying the trade-off between percentage of renewable supply and affordability in Pacific island countries: Case study of Samoa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    6. Mark Z. Jacobson & Anna-Katharina von Krauland & Zachary F.M. Burton & Stephen J. Coughlin & Caitlin Jaeggli & Daniel Nelli & Alexander J. H. Nelson & Yanbo Shu & Miles Smith & Chor Tan & Connery D. W, 2020. "Transitioning All Energy in 74 Metropolitan Areas, Including 30 Megacities, to 100% Clean and Renewable Wind, Water, and Sunlight (WWS)," Energies, MDPI, vol. 13(18), pages 1-40, September.
    7. Lund, Henrik & Thellufsen, Jakob Zinck & Sorknæs, Peter & Mathiesen, Brian Vad & Chang, Miguel & Madsen, Poul Thøis & Kany, Mikkel Strunge & Skov, Iva Ridjan, 2022. "Smart energy Denmark. A consistent and detailed strategy for a fully decarbonized society," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    8. Pastore, Lorenzo Mario & Lo Basso, Gianluigi & Sforzini, Matteo & de Santoli, Livio, 2022. "Technical, economic and environmental issues related to electrolysers capacity targets according to the Italian Hydrogen Strategy: A critical analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    9. Hansen, Kenneth & Mathiesen, Brian Vad & Skov, Iva Ridjan, 2019. "Full energy system transition towards 100% renewable energy in Germany in 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 1-13.
    10. Pastore, Lorenzo Mario & Lo Basso, Gianluigi & Cristiani, Laura & de Santoli, Livio, 2022. "Rising targets to 55% GHG emissions reduction – The smart energy systems approach for improving the Italian energy strategy," Energy, Elsevier, vol. 259(C).
    11. Zappa, William & Junginger, Martin & van den Broek, Machteld, 2019. "Is a 100% renewable European power system feasible by 2050?," Applied Energy, Elsevier, vol. 233, pages 1027-1050.
    12. Jacobson, Mark Z., 2021. "The cost of grid stability with 100 % clean, renewable energy for all purposes when countries are isolated versus interconnected," Renewable Energy, Elsevier, vol. 179(C), pages 1065-1075.
    13. Copp, David A. & Nguyen, Tu A. & Byrne, Raymond H. & Chalamala, Babu R., 2022. "Optimal sizing of distributed energy resources for planning 100% renewable electric power systems," Energy, Elsevier, vol. 239(PE).
    14. Lu, Bin & Blakers, Andrew & Stocks, Matthew & Do, Thang Nam, 2021. "Low-cost, low-emission 100% renewable electricity in Southeast Asia supported by pumped hydro storage," Energy, Elsevier, vol. 236(C).
    15. Victoria, Marta & Gallego-Castillo, Cristobal, 2019. "Hourly-resolution analysis of electricity decarbonization in Spain (2017–2030)," Applied Energy, Elsevier, vol. 233, pages 674-690.
    16. Chang, Miguel & Thellufsen, Jakob Zink & Zakeri, Behnam & Pickering, Bryn & Pfenninger, Stefan & Lund, Henrik & Østergaard, Poul Alberg, 2021. "Trends in tools and approaches for modelling the energy transition," Applied Energy, Elsevier, vol. 290(C).
    17. Diesendorf, Mark & Elliston, Ben, 2018. "The feasibility of 100% renewable electricity systems: A response to critics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 318-330.
    18. Pastore, Lorenzo Mario & Lo Basso, Gianluigi & de Santoli, Livio, 2022. "Can the renewable energy share increase in electricity and gas grids takes out the competitiveness of gas-driven CHP plants for distributed generation?," Energy, Elsevier, vol. 256(C).
    19. Borasio, M. & Moret, S., 2022. "Deep decarbonisation of regional energy systems: A novel modelling approach and its application to the Italian energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    20. Md. Nasimul Islam Maruf, 2019. "Sector Coupling in the North Sea Region—A Review on the Energy System Modelling Perspective," Energies, MDPI, vol. 12(22), pages 1-35, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:176:y:2021:i:c:p:433-446. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.