IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i18p6598-d1239249.html
   My bibliography  Save this article

Towards a Common Methodology and Modelling Tool for 100% Renewable Energy Analysis: A Review

Author

Listed:
  • Joseph Akpan

    (Industrial Engineering Department, Durban University of Technology, Durban 4001, South Africa)

  • Oludolapo Olanrewaju

    (Industrial Engineering Department, Durban University of Technology, Durban 4001, South Africa)

Abstract

Some advanced countries’ rapid population, economic growth, and energy consumption expansion contribute significantly to global CO 2 emissions. And while developed countries have achieved 100% universal access to electricity, mainly from non-renewable sources, many developing countries still lack it. This presents challenges and opportunities for achieving the United Nations’ Sustainable Development Goals (SDGs) 7 and 13 of generating all energy from cleaner or low-carbon sources to reduce CO 2 emissions in all countries and combating climate change consequences. Renewable energies have been widely acknowledged to greatly advance this endeavour, resulting in many studies and about 30 countries already with over 70% of their national electricity mix from RE. It has birthed a new paradigm and an emerging field of 100% RE for all purposes, recently receiving much attention from academia and in public discourse. The major challenge with this idea is that achieving such a feat requires a more diverse approach. This study emphasises the need to meet technical and non-technical requirements for working towards a 100% RE for all purposes. Therefore, our work introduces six methodological or evaluation mechanisms (herein, identified as 100% RE evaluation metrics) suitable for existing and future 100% renewable energy analysis. It then reviews energy modelling tools to identify their applicability to 100% RE analysis. The review and perspectives presented in this study will be valuable in developing a common integrated methodology and modelling tool for analysing full renewable energy adoption in countries or regions with best trade-offs, using performance indices that have not been previously used. It will also help with proper national and regional energy resources and system planning for new energy projects and installations, contributing to sustainable development.

Suggested Citation

  • Joseph Akpan & Oludolapo Olanrewaju, 2023. "Towards a Common Methodology and Modelling Tool for 100% Renewable Energy Analysis: A Review," Energies, MDPI, vol. 16(18), pages 1-42, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6598-:d:1239249
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/18/6598/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/18/6598/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Palzer, Andreas & Henning, Hans-Martin, 2014. "A comprehensive model for the German electricity and heat sector in a future energy system with a dominant contribution from renewable energy technologies – Part II: Results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 1019-1034.
    2. Reyseliani, Nadhilah & Purwanto, Widodo Wahyu, 2021. "Pathway towards 100% renewable energy in Indonesia power system by 2050," Renewable Energy, Elsevier, vol. 176(C), pages 305-321.
    3. Meyar-Naimi, H. & Vaez-Zadeh, S., 2012. "Sustainable development based energy policy making frameworks, a critical review," Energy Policy, Elsevier, vol. 43(C), pages 351-361.
    4. Bård Lahn, 2020. "A history of the global carbon budget," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(3), May.
    5. Luigi Schirone & Filippo Pellitteri, 2017. "Energy Policies and Sustainable Management of Energy Sources," Sustainability, MDPI, vol. 9(12), pages 1-13, December.
    6. Lund, Henrik, 2007. "Renewable energy strategies for sustainable development," Energy, Elsevier, vol. 32(6), pages 912-919.
    7. Ameyaw, Bismark & Li, Yao & Ma, Yongkai & Agyeman, Joy Korang & Appiah-Kubi, Jamal & Annan, Augustine, 2021. "Renewable electricity generation proposed pathways for the US and China," Renewable Energy, Elsevier, vol. 170(C), pages 212-223.
    8. Weitemeyer, Stefan & Kleinhans, David & Vogt, Thomas & Agert, Carsten, 2015. "Integration of Renewable Energy Sources in future power systems: The role of storage," Renewable Energy, Elsevier, vol. 75(C), pages 14-20.
    9. Jude Suchithra & Duane Robinson & Amin Rajabi, 2023. "Hosting Capacity Assessment Strategies and Reinforcement Learning Methods for Coordinated Voltage Control in Electricity Distribution Networks: A Review," Energies, MDPI, vol. 16(5), pages 1-28, March.
    10. Ilaria Perissi & Gianluca Martelloni & Ugo Bardi & Davide Natalini & Aled Jones & Angel Nikolaev & Lukas Eggler & Martin Baumann & Roger Samsó & Jordi Solé, 2021. "Cross-Validation of the MEDEAS Energy-Economy-Environment Model with the Integrated MARKAL-EFOM System (TIMES) and the Long-Range Energy Alternatives Planning System (LEAP)," Sustainability, MDPI, vol. 13(4), pages 1-27, February.
    11. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
    12. United Nations UN, 2015. "Transforming our World: the 2030 Agenda for Sustainable Development," Working Papers id:7559, eSocialSciences.
    13. Torsten Ehlers & Benoit Mojon & Frank Packer, 2020. "Green bonds and carbon emissions: exploring the case for a rating system at the firm level," BIS Quarterly Review, Bank for International Settlements, September.
    14. Lund, Henrik & Andersen, Anders N. & Østergaard, Poul Alberg & Mathiesen, Brian Vad & Connolly, David, 2012. "From electricity smart grids to smart energy systems – A market operation based approach and understanding," Energy, Elsevier, vol. 42(1), pages 96-102.
    15. Henning Meschede & Paul Bertheau & Siavash Khalili & Christian Breyer, 2022. "A review of 100% renewable energy scenarios on islands," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(6), November.
    16. Olabi, A.G. & Abdelkareem, Mohammad Ali, 2022. "Renewable energy and climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    17. Henning, Hans-Martin & Palzer, Andreas, 2014. "A comprehensive model for the German electricity and heat sector in a future energy system with a dominant contribution from renewable energy technologies—Part I: Methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 1003-1018.
    18. Jacobson, Mark Z. & Delucchi, Mark A., 2011. "Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials," Energy Policy, Elsevier, vol. 39(3), pages 1154-1169, March.
    19. Heidari, Negin & Pearce, Joshua M., 2016. "A review of greenhouse gas emission liabilities as the value of renewable energy for mitigating lawsuits for climate change related damages," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 899-908.
    20. Phillips, K. & Moncada, J.A. & Ergun, H. & Delarue, E., 2023. "Spatial representation of renewable technologies in generation expansion planning models," Applied Energy, Elsevier, vol. 342(C).
    21. Roth, Ian F. & Ambs, Lawrence L., 2004. "Incorporating externalities into a full cost approach to electric power generation life-cycle costing," Energy, Elsevier, vol. 29(12), pages 2125-2144.
    22. Zhu, Jizhong & Dong, Hanjiang & Zheng, Weiye & Li, Shenglin & Huang, Yanting & Xi, Lei, 2022. "Review and prospect of data-driven techniques for load forecasting in integrated energy systems," Applied Energy, Elsevier, vol. 321(C).
    23. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    24. Ram, Manish & Gulagi, Ashish & Aghahosseini, Arman & Bogdanov, Dmitrii & Breyer, Christian, 2022. "Energy transition in megacities towards 100% renewable energy: A case for Delhi," Renewable Energy, Elsevier, vol. 195(C), pages 578-589.
    25. Mathijs Harmsen & Elmar Kriegler & Detlef van Vuuren & Kaj-Ivar van Der Wijst & Gunnar Luderer & Ryna Cui & Olivier Dessens & Laurent Drouet & Johannes Emmerling & Jennifer Morris & Florian Fosse & Di, 2021. "Integrated assessment model diagnostics: key indicators and model evolution," Post-Print hal-03216627, HAL.
    26. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Solbrekke, Ida Marie, 2018. "A review of modelling tools for energy and electricity systems with large shares of variable renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 440-459.
    27. Simoglou, Christos K. & Bakirtzis, Emmanouil A. & Biskas, Pandelis N. & Bakirtzis, Anastasios G., 2016. "Optimal operation of insular electricity grids under high RES penetration," Renewable Energy, Elsevier, vol. 86(C), pages 1308-1316.
    28. Zhao, Guangling & Guerrero, Josep M. & Jiang, Kejun & Chen, Sha, 2017. "Energy modelling towards low carbon development of Beijing in 2030," Energy, Elsevier, vol. 121(C), pages 107-113.
    29. Delucchi, Mark A. & Jacobson, Mark Z., 2011. "Providing all global energy with wind, water, and solar power, Part II: Reliability, system and transmission costs, and policies," Energy Policy, Elsevier, vol. 39(3), pages 1170-1190, March.
    30. Rentizelas, Athanasios & Georgakellos, Dimitrios, 2014. "Incorporating life cycle external cost in optimization of the electricity generation mix," Energy Policy, Elsevier, vol. 65(C), pages 134-149.
    31. Vaillancourt, Kathleen & Bahn, Olivier & Frenette, Erik & Sigvaldason, Oskar, 2017. "Exploring deep decarbonization pathways to 2050 for Canada using an optimization energy model framework," Applied Energy, Elsevier, vol. 195(C), pages 774-785.
    32. Akuru, Udochukwu B. & Onukwube, Ifeanyichukwu E. & Okoro, Ogbonnaya I. & Obe, Emeka S., 2017. "Towards 100% renewable energy in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 943-953.
    33. Jacobson, Mark Z., 2021. "The cost of grid stability with 100 % clean, renewable energy for all purposes when countries are isolated versus interconnected," Renewable Energy, Elsevier, vol. 179(C), pages 1065-1075.
    34. Nissen, Ulrich & Harfst, Nathanael, 2019. "Shortcomings of the traditional “levelized cost of energy” [LCOE] for the determination of grid parity," Energy, Elsevier, vol. 171(C), pages 1009-1016.
    35. Zhang, Yuanyuan & Zhao, Huiru & Li, Bingkang, 2022. "Research on the design and influence of unit generation capacity adequacy guarantee mechanism in the power market," Energy, Elsevier, vol. 248(C).
    36. Liu, Wen & Lund, Henrik & Mathiesen, Brian Vad & Zhang, Xiliang, 2011. "Potential of renewable energy systems in China," Applied Energy, Elsevier, vol. 88(2), pages 518-525, February.
    37. Chih-Chun Kung & Bruce A. McCarl, 2018. "Sustainable Energy Development under Climate Change," Sustainability, MDPI, vol. 10(9), pages 1-4, September.
    38. Chang, Miguel & Thellufsen, Jakob Zink & Zakeri, Behnam & Pickering, Bryn & Pfenninger, Stefan & Lund, Henrik & Østergaard, Poul Alberg, 2021. "Trends in tools and approaches for modelling the energy transition," Applied Energy, Elsevier, vol. 290(C).
    39. Syahrul Nizam Md Saad & Adriaan Hendrik van der Weijde, 2019. "Evaluating the Potential of Hosting Capacity Enhancement Using Integrated Grid Planning modeling Methods," Energies, MDPI, vol. 12(19), pages 1-23, September.
    40. Patricio F. Castro & Yuri Percy M. Rodriguez & Fabricio B. S. Carvalho, 2022. "Application of Generation Adequacy Analysis for Reliability Evaluation of a Floating Production Storage and Offloading Platform Power System," Energies, MDPI, vol. 15(15), pages 1-16, July.
    41. Chen, Xiaofei & Xiao, Jinmei & Yuan, Jiaqi & Xiao, Ziwei & Gang, Wenjie, 2021. "Application and performance analysis of 100% renewable energy systems serving low-density communities," Renewable Energy, Elsevier, vol. 176(C), pages 433-446.
    42. Aghahosseini, Arman & Solomon, A.A. & Breyer, Christian & Pregger, Thomas & Simon, Sonja & Strachan, Peter & Jäger-Waldau, Arnulf, 2023. "Energy system transition pathways to meet the global electricity demand for ambitious climate targets and cost competitiveness," Applied Energy, Elsevier, vol. 331(C).
    43. Behboodi, Sahand & Chassin, David P. & Djilali, Ned & Crawford, Curran, 2017. "Interconnection-wide hour-ahead scheduling in the presence of intermittent renewables and demand response: A surplus maximizing approach," Applied Energy, Elsevier, vol. 189(C), pages 336-351.
    44. Jacobson, Mark Z. & Delucchi, Mark A. & Cameron, Mary A. & Mathiesen, Brian V., 2018. "Matching demand with supply at low cost in 139 countries among 20 world regions with 100% intermittent wind, water, and sunlight (WWS) for all purposes," Renewable Energy, Elsevier, vol. 123(C), pages 236-248.
    45. Mohammad Zain ul Abideen & Omar Ellabban & Luluwah Al-Fagih, 2020. "A Review of the Tools and Methods for Distribution Networks’ Hosting Capacity Calculation," Energies, MDPI, vol. 13(11), pages 1-25, June.
    46. Bamisile, Olusola & Huang, Qi & Xu, Xiao & Hu, Weihao & Liu, Wen & Liu, Zhou & Chen, Zhe, 2020. "An approach for sustainable energy planning towards 100 % electrification of Nigeria by 2030," Energy, Elsevier, vol. 197(C).
    47. Johannsen, Rasmus Magni & Mathiesen, Brian Vad & Kermeli, Katerina & Crijns-Graus, Wina & Østergaard, Poul Alberg, 2023. "Exploring pathways to 100% renewable energy in European industry," Energy, Elsevier, vol. 268(C).
    48. Nam, KiJeon & Hwangbo, Soonho & Yoo, ChangKyoo, 2020. "A deep learning-based forecasting model for renewable energy scenarios to guide sustainable energy policy: A case study of Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).
    49. Doukas, Haris & Papadopoulou, Alexandra G. & Nychtis, Christos & Psarras, John & van Beeck, Nicole, 2009. "Energy research and technology development data collection strategies: The case of Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 682-688, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    3. Maruf, Md. Nasimul Islam, 2021. "Open model-based analysis of a 100% renewable and sector-coupled energy system–The case of Germany in 2050," Applied Energy, Elsevier, vol. 288(C).
    4. Md. Nasimul Islam Maruf, 2019. "Sector Coupling in the North Sea Region—A Review on the Energy System Modelling Perspective," Energies, MDPI, vol. 12(22), pages 1-35, November.
    5. Joseph Akpan & Oludolapo Olanrewaju, 2023. "Sustainable Energy Development: History and Recent Advances," Energies, MDPI, vol. 16(20), pages 1-44, October.
    6. Blanco, Herib & Faaij, André, 2018. "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1049-1086.
    7. Dominković, D.F. & Weinand, J.M. & Scheller, F. & D'Andrea, M. & McKenna, R., 2022. "Reviewing two decades of energy system analysis with bibliometrics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    8. Thure Traber & Franziska Simone Hegner & Hans-Josef Fell, 2021. "An Economically Viable 100% Renewable Energy System for All Energy Sectors of Germany in 2030," Energies, MDPI, vol. 14(17), pages 1-17, August.
    9. Olav H. Hohmeyer & Sönke Bohm, 2015. "Trends toward 100% renewable electricity supply in Germany and Europe: a paradigm shift in energy policies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(1), pages 74-97, January.
    10. Martin Robinius & Alexander Otto & Philipp Heuser & Lara Welder & Konstantinos Syranidis & David S. Ryberg & Thomas Grube & Peter Markewitz & Ralf Peters & Detlef Stolten, 2017. "Linking the Power and Transport Sectors—Part 1: The Principle of Sector Coupling," Energies, MDPI, vol. 10(7), pages 1-22, July.
    11. Lopez, Gabriel & Aghahosseini, Arman & Child, Michael & Khalili, Siavash & Fasihi, Mahdi & Bogdanov, Dmitrii & Breyer, Christian, 2022. "Impacts of model structure, framework, and flexibility on perspectives of 100% renewable energy transition decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    12. Connolly, D. & Lund, H. & Mathiesen, B.V., 2016. "Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1634-1653.
    13. Alexander Blinn & Henrik te Heesen, 2022. "UCB-SEnMod : A Model for Analyzing Future Energy Systems with 100% Renewable Energy Technologies—Methodology," Energies, MDPI, vol. 15(12), pages 1-22, June.
    14. Abuzayed, Anas & Hartmann, Niklas, 2022. "MyPyPSA-Ger: Introducing CO2 taxes on a multi-regional myopic roadmap of the German electricity system towards achieving the 1.5 °C target by 2050," Applied Energy, Elsevier, vol. 310(C).
    15. Batas Bjelić, Ilija & Rajaković, Nikola, 2015. "Simulation-based optimization of sustainable national energy systems," Energy, Elsevier, vol. 91(C), pages 1087-1098.
    16. Brown, T. & Schlachtberger, D. & Kies, A. & Schramm, S. & Greiner, M., 2018. "Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system," Energy, Elsevier, vol. 160(C), pages 720-739.
    17. Klemm, Christian & Vennemann, Peter, 2021. "Modeling and optimization of multi-energy systems in mixed-use districts: A review of existing methods and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    18. Diesendorf, Mark & Elliston, Ben, 2018. "The feasibility of 100% renewable electricity systems: A response to critics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 318-330.
    19. Welder, Lara & Ryberg, D.Severin & Kotzur, Leander & Grube, Thomas & Robinius, Martin & Stolten, Detlef, 2018. "Spatio-temporal optimization of a future energy system for power-to-hydrogen applications in Germany," Energy, Elsevier, vol. 158(C), pages 1130-1149.
    20. Bove, Roberto & Bucher, Matthias & Ferretti, Fabio, 2012. "Integrating large shares of wind energy in macro-economical cost-effective way," Energy, Elsevier, vol. 43(1), pages 438-447.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6598-:d:1239249. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.