IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i18p10479-d639860.html
   My bibliography  Save this article

A Review on the Efficient Catalysts for Algae Transesterification to Biodiesel

Author

Listed:
  • Elena Ghedini

    (CATMAT Lab, Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice and INSTM RUVe, Via Torino 155, Mestre, 30172 Venezia, Italy)

  • Somayeh Taghavi

    (CATMAT Lab, Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice and INSTM RUVe, Via Torino 155, Mestre, 30172 Venezia, Italy)

  • Federica Menegazzo

    (CATMAT Lab, Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice and INSTM RUVe, Via Torino 155, Mestre, 30172 Venezia, Italy)

  • Michela Signoretto

    (CATMAT Lab, Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice and INSTM RUVe, Via Torino 155, Mestre, 30172 Venezia, Italy)

Abstract

The depletion of fossil fuel resources and increasing environmental pollution led to a trend for using alternative, clean, green, and sustainable fuel and energy resources. To attain this aim, using biomass as an alternative resource for diesel production has been a hotspot among researchers. Biodiesel has several advantages, such as being lower toxic and more renewable, and eco-friendlier than diesel from fossil fuel resources. Several edible and non-edible bio-sources were used for the production of biodiesel from the transesterification process. Algal oil as a non-edible source is considered an abundant, low cost and green substrate for biodiesel production. Various factors such as reaction conditions and the type of catalyst affect the biodiesel production process. Different catalytic systems such as basic and acidic homogeneous and heterogeneous catalysts and biocatalysts were introduced for the process in the literature, and each proposed catalyst has its own advantages and disadvantages. For instance, in spite of the lower cost and better mass transfer of base and acid homogeneous catalysts, reaction system corrosion, non-reusability, and soap formation are serious challenges of these catalysts at an industrial scale. On the other hand, acid and base heterogenous catalysts overcame the issues of corrosion and recovery, but some matters such as mass transfer limitation, high cost, and weak performance in catalyzing both esterification of FFAs and transesterification of lipids must be taken into account. In addition, bio-catalysis as a high-cost process led to a purer product formation with less side reaction. Therefore, several significant factors should be considered for transesterification catalysts such as availability, cost, reusability, stability, mass transfer, and the possibility to manage both the transesterification of triglycerides and the esterification of FFAs, selecting a catalyst with predominant pros is viable. Here, a review of the biodiesel production from algal biomass focusing on the efficient catalyst of the process is presented.

Suggested Citation

  • Elena Ghedini & Somayeh Taghavi & Federica Menegazzo & Michela Signoretto, 2021. "A Review on the Efficient Catalysts for Algae Transesterification to Biodiesel," Sustainability, MDPI, vol. 13(18), pages 1-20, September.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:18:p:10479-:d:639860
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/18/10479/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/18/10479/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. de Jesus, Sérgio S. & Ferreira, Gabriela F. & Moreira, Larissa S. & Filho, Rubens Maciel, 2020. "Biodiesel production from microalgae by direct transesterification using green solvents," Renewable Energy, Elsevier, vol. 160(C), pages 1283-1294.
    2. Rahman, M.A., 2018. "Valorization of harmful algae E. compressa for biodiesel production in presence of chicken waste derived catalyst," Renewable Energy, Elsevier, vol. 129(PA), pages 132-140.
    3. Ramachandran, K. & Suganya, T. & Nagendra Gandhi, N. & Renganathan, S., 2013. "Recent developments for biodiesel production by ultrasonic assist transesterification using different heterogeneous catalyst: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 410-418.
    4. Nematian, Tahereh & Salehi, Zeinab & Shakeri, Alireza, 2020. "Conversion of bio-oil extracted from Chlorella vulgaris micro algae to biodiesel via modified superparamagnetic nano-biocatalyst," Renewable Energy, Elsevier, vol. 146(C), pages 1796-1804.
    5. Guldhe, Abhishek & Singh, Poonam & Kumari, Sheena & Rawat, Ismail & Permaul, Kugen & Bux, Faizal, 2016. "Biodiesel synthesis from microalgae using immobilized Aspergillus niger whole cell lipase biocatalyst," Renewable Energy, Elsevier, vol. 85(C), pages 1002-1010.
    6. Höök, Mikael & Tang, Xu, 2013. "Depletion of fossil fuels and anthropogenic climate change—A review," Energy Policy, Elsevier, vol. 52(C), pages 797-809.
    7. Chouhan, A.P. Singh & Sarma, A.K., 2011. "Modern heterogeneous catalysts for biodiesel production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4378-4399.
    8. Mathimani, Thangavel & Uma, Lakshmanan & Prabaharan, Dharmar, 2015. "Homogeneous acid catalysed transesterification of marine microalga Chlorella sp. BDUG 91771 lipid – An efficient biodiesel yield and its characterization," Renewable Energy, Elsevier, vol. 81(C), pages 523-533.
    9. Schut, Marc & Slingerland, Maja & Locke, Anna, 2010. "Biofuel developments in Mozambique. Update and analysis of policy, potential and reality," Energy Policy, Elsevier, vol. 38(9), pages 5151-5165, September.
    10. Rawat, I. & Ranjith Kumar, R. & Mutanda, T. & Bux, F., 2013. "Biodiesel from microalgae: A critical evaluation from laboratory to large scale production," Applied Energy, Elsevier, vol. 103(C), pages 444-467.
    11. Enamala, Manoj Kumar & Enamala, Swapnika & Chavali, Murthy & Donepudi, Jagadish & Yadavalli, Rajasri & Kolapalli, Bhulakshmi & Aradhyula, Tirumala Vasu & Velpuri, Jeevitha & Kuppam, Chandrasekhar, 2018. "Production of biofuels from microalgae - A review on cultivation, harvesting, lipid extraction, and numerous applications of microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 49-68.
    12. Narula, Vishal & Thakur, Aman & Uniyal, Ankit & Kalra, Shashvat & Jain, Siddharth, 2017. "Process parameter optimization of low temperature transesterification of algae-Jatropha Curcas oil blend," Energy, Elsevier, vol. 119(C), pages 983-988.
    13. Borges, M.E. & Díaz, L., 2012. "Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2839-2849.
    14. Zhou, Wenguang & Wang, Jinghan & Chen, Paul & Ji, Chengcheng & Kang, Qiuyun & Lu, Bei & Li, Kun & Liu, Jin & Ruan, Roger, 2017. "Bio-mitigation of carbon dioxide using microalgal systems: Advances and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1163-1175.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kate Kim & Farzad Hourfar & Abdul Halim Bin Abdul Razik & Muhammad Rizwan & Ali Almansoori & Michael Fowler & Ali Elkamel, 2023. "Importance of Microalgae and Municipal Waste in Bioenergy Products Hierarchy—Integration of Biorefineries for Microalgae and Municipal Waste Processing: A Review," Energies, MDPI, vol. 16(17), pages 1-39, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    2. Shahinuzzaman, M. & Yaakob, Zahira & Ahmed, Yunus, 2017. "Non-sulphide zeolite catalyst for bio-jet-fuel conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1375-1384.
    3. Galadima, Ahmad & Muraza, Oki, 2014. "Biodiesel production from algae by using heterogeneous catalysts: A critical review," Energy, Elsevier, vol. 78(C), pages 72-83.
    4. Vadery, Vinu & Cherikkallinmel, Sudha Kochiyil & Ramakrishnan, Resmi M. & Sugunan, Sankaran & Narayanan, Binitha N., 2019. "Green production of biodiesel over waste borosilicate glass derived catalyst and the process up-gradation in pilot scale," Renewable Energy, Elsevier, vol. 141(C), pages 1042-1053.
    5. Jesús Andrés Tavizón-Pozos & Gerardo Chavez-Esquivel & Víctor Alejandro Suárez-Toriello & Carlos Eduardo Santolalla-Vargas & Oscar Abel Luévano-Rivas & Omar Uriel Valdés-Martínez & Alfonso Talavera-Ló, 2021. "State of Art of Alkaline Earth Metal Oxides Catalysts Used in the Transesterification of Oils for Biodiesel Production," Energies, MDPI, vol. 14(4), pages 1-24, February.
    6. Chakraborty, Rajat & Gupta, Abhishek.K. & Chowdhury, Ratul, 2014. "Conversion of slaughterhouse and poultry farm animal fats and wastes to biodiesel: Parametric sensitivity and fuel quality assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 120-134.
    7. Mansir, Nasar & Teo, Siow Hwa & Rashid, Umer & Saiman, Mohd Izham & Tan, Yen Ping & Alsultan, G. Abdulkareem & Taufiq-Yap, Yun Hin, 2018. "Modified waste egg shell derived bifunctional catalyst for biodiesel production from high FFA waste cooking oil. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3645-3655.
    8. Shen, Yafei, 2017. "Rice husk silica derived nanomaterials for sustainable applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 453-466.
    9. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    10. Nongbe, Medy C. & Ekou, Tchirioua & Ekou, Lynda & Yao, Kouassi Benjamin & Le Grognec, Erwan & Felpin, François-Xavier, 2017. "Biodiesel production from palm oil using sulfonated graphene catalyst," Renewable Energy, Elsevier, vol. 106(C), pages 135-141.
    11. Zhang, Heng & Li, Hu & Hu, Yulin & Venkateswara Rao, Kasanneni Tirumala & Xu, Chunbao (Charles) & Yang, Song, 2019. "Advances in production of bio-based ester fuels with heterogeneous bifunctional catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    12. Galadima, Ahmad & Muraza, Oki, 2018. "Hydrothermal liquefaction of algae and bio-oil upgrading into liquid fuels: Role of heterogeneous catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1037-1048.
    13. Vadery, Vinu & Narayanan, Binitha N. & Ramakrishnan, Resmi M. & Cherikkallinmel, Sudha Kochiyil & Sugunan, Sankaran & Narayanan, Divya P. & Sasidharan, Sreenikesh, 2014. "Room temperature production of jatropha biodiesel over coconut husk ash," Energy, Elsevier, vol. 70(C), pages 588-594.
    14. de Souza Rossi, Jessika & Perrone, Olavo Micali & Siqueira, Marcos Rechi & Volanti, Diogo Paschoalini & Gomes, Eleni & Da-Silva, Roberto & Boscolo, Mauricio, 2019. "Effect of lanthanide ion doping on Mg−Al mixed oxides as active acid−base catalysts for fatty acid ethyl ester synthesis," Renewable Energy, Elsevier, vol. 133(C), pages 367-372.
    15. Rafael Estevez & Laura Aguado-Deblas & Diego Luna & Felipa M. Bautista, 2019. "An Overview of the Production of Oxygenated Fuel Additives by Glycerol Etherification, Either with Isobutene or tert -Butyl Alcohol, over Heterogeneous Catalysts," Energies, MDPI, vol. 12(12), pages 1-20, June.
    16. Peter, Angela Paul & Koyande, Apurav Krishna & Chew, Kit Wayne & Ho, Shih-Hsin & Chen, Wei-Hsin & Chang, Jo-Shu & Krishnamoorthy, Rambabu & Banat, Fawzi & Show, Pau Loke, 2022. "Continuous cultivation of microalgae in photobioreactors as a source of renewable energy: Current status and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    17. Abdullah, Sharifah Hanis Yasmin Sayid & Hanapi, Nur Hanis Mohamad & Azid, Azman & Umar, Roslan & Juahir, Hafizan & Khatoon, Helena & Endut, Azizah, 2017. "A review of biomass-derived heterogeneous catalyst for a sustainable biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1040-1051.
    18. Cuevas-Castillo, Gabriela A. & Navarro-Pineda, Freddy S. & Baz Rodríguez, Sergio A. & Sacramento Rivero, Julio C., 2020. "Advances on the processing of microalgal biomass for energy-driven biorefineries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    19. Nitièma-Yefanova, Svitlana & Coniglio, Lucie & Schneider, Raphaël & Nébié, Roger H.C. & Bonzi-Coulibaly, Yvonne L., 2016. "Ethyl biodiesel production from non-edible oils of Balanites aegyptiaca, Azadirachta indica, and Jatropha curcas seeds – Laboratory scale development," Renewable Energy, Elsevier, vol. 96(PA), pages 881-890.
    20. Calero, Juan & Luna, Diego & Sancho, Enrique D. & Luna, Carlos & Bautista, Felipa M. & Romero, Antonio A. & Posadillo, Alejandro & Berbel, Julio & Verdugo-Escamilla, Cristóbal, 2015. "An overview on glycerol-free processes for the production of renewable liquid biofuels, applicable in diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1437-1452.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:18:p:10479-:d:639860. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.