IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v15y2011i9p4378-4399.html
   My bibliography  Save this article

Modern heterogeneous catalysts for biodiesel production: A comprehensive review

Author

Listed:
  • Chouhan, A.P. Singh
  • Sarma, A.K.

Abstract

Steep hikes of petroleum prices and rising demand of petroleum products compels the scientific society to think for the renewable alternative fuels like biodiesel. Biodiesel production is generally carried out through the process of transesterification reaction. The reaction is facilitated with a suitable catalyst either homogeneous or heterogeneous. The selection of appropriate catalyst depends on the amount of free fatty acids in the oil. Heterogeneous catalyst provides high activity, high selectivity, high water tolerance properties and these properties depend on the amount and strengths of active acid or basic sites. Basic catalyst can be subdivided based on the type of metal oxides and their derivatives. Similarly, acidic catalyst can be subdivided depending upon their active acidic sites. New varieties of mixed catalyst are also available in literatures. Catalyst generated from bio-waste and other biocatalysts which are heterogeneous in nature and extensively reported in literature are also reviewed. This review focused about the recent invention and use of the heterogeneous acid, base and biocatalysts for biodiesel production and their suitability for industrial application.

Suggested Citation

  • Chouhan, A.P. Singh & Sarma, A.K., 2011. "Modern heterogeneous catalysts for biodiesel production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4378-4399.
  • Handle: RePEc:eee:rensus:v:15:y:2011:i:9:p:4378-4399
    DOI: 10.1016/j.rser.2011.07.112
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032111003595
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2011.07.112?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wen, Zhenzhong & Yu, Xinhai & Tu, Shan-Tung & Yan, Jinyue & Dahlquist, Erik, 2010. "Synthesis of biodiesel from vegetable oil with methanol catalyzed by Li-doped magnesium oxide catalysts," Applied Energy, Elsevier, vol. 87(3), pages 743-748, March.
    2. Noiroj, Krisada & Intarapong, Pisitpong & Luengnaruemitchai, Apanee & Jai-In, Samai, 2009. "A comparative study of KOH/Al2O3 and KOH/NaY catalysts for biodiesel production via transesterification from palm oil," Renewable Energy, Elsevier, vol. 34(4), pages 1145-1150.
    3. Jegannathan, Kenthorai Raman & Eng-Seng, Chan & Ravindra, Pogaku, 2011. "Economic assessment of biodiesel production: Comparison of alkali and biocatalyst processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 745-751, January.
    4. Li, Shiwu & Wang, Yunpeng & Dong, Shengwu & Chen, Yang & Cao, Fenghua & Chai, Fang & Wang, Xiaohong, 2009. "Biodiesel production from Eruca Sativa Gars vegetable oil and motor, emissions properties," Renewable Energy, Elsevier, vol. 34(7), pages 1871-1876.
    5. Meher, L.C. & Vidya Sagar, D. & Naik, S.N., 2006. "Technical aspects of biodiesel production by transesterification--a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(3), pages 248-268, June.
    6. Masakazu Toda & Atsushi Takagaki & Mai Okamura & Junko N. Kondo & Shigenobu Hayashi & Kazunari Domen & Michikazu Hara, 2005. "Biodiesel made with sugar catalyst," Nature, Nature, vol. 438(7065), pages 178-178, November.
    7. Shu, Qing & Gao, Jixian & Nawaz, Zeeshan & Liao, Yuhui & Wang, Dezheng & Wang, Jinfu, 2010. "Synthesis of biodiesel from waste vegetable oil with large amounts of free fatty acids using a carbon-based solid acid catalyst," Applied Energy, Elsevier, vol. 87(8), pages 2589-2596, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    2. Boonyongmaneerat, Yuttanant & Sukjamsri, Chamaiporn & Sahapatsombut, Ukrit & Saenapitak, Sawalee & Sukkasi, Sittha, 2011. "Investigation of electrodeposited Ni-based coatings for biodiesel storage," Applied Energy, Elsevier, vol. 88(3), pages 909-913, March.
    3. Borges, M.E. & Díaz, L., 2012. "Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2839-2849.
    4. Guo, Feng & Xiu, Zhi-Long & Liang, Zhi-Xia, 2012. "Synthesis of biodiesel from acidified soybean soapstock using a lignin-derived carbonaceous catalyst," Applied Energy, Elsevier, vol. 98(C), pages 47-52.
    5. Ramachandran, K. & Suganya, T. & Nagendra Gandhi, N. & Renganathan, S., 2013. "Recent developments for biodiesel production by ultrasonic assist transesterification using different heterogeneous catalyst: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 410-418.
    6. Dawodu, Folasegun A. & Ayodele, Olubunmi & Xin, Jiayu & Zhang, Suojiang & Yan, Dongxia, 2014. "Effective conversion of non-edible oil with high free fatty acid into biodiesel by sulphonated carbon catalyst," Applied Energy, Elsevier, vol. 114(C), pages 819-826.
    7. Lin, Lin & Cunshan, Zhou & Vittayapadung, Saritporn & Xiangqian, Shen & Mingdong, Dong, 2011. "Opportunities and challenges for biodiesel fuel," Applied Energy, Elsevier, vol. 88(4), pages 1020-1031, April.
    8. Atapour, Mehdi & Kariminia, Hamid-Reza, 2011. "Characterization and transesterification of Iranian bitter almond oil for biodiesel production," Applied Energy, Elsevier, vol. 88(7), pages 2377-2381, July.
    9. Shu, Qing & Gao, Jixian & Nawaz, Zeeshan & Liao, Yuhui & Wang, Dezheng & Wang, Jinfu, 2010. "Synthesis of biodiesel from waste vegetable oil with large amounts of free fatty acids using a carbon-based solid acid catalyst," Applied Energy, Elsevier, vol. 87(8), pages 2589-2596, August.
    10. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    11. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Zarei, Alireza & Noshadi, Iman, 2013. "Transesterification of waste cooking oil by heteropoly acid (HPA) catalyst: Optimization and kinetic model," Applied Energy, Elsevier, vol. 102(C), pages 283-292.
    12. Konwar, Lakhya Jyoti & Boro, Jutika & Deka, Dhanapati, 2014. "Review on latest developments in biodiesel production using carbon-based catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 546-564.
    13. Singh, Paramvir & Varun, & Chauhan, S.R. & Kumar, Niraj, 2016. "A review on methodology for complete elimination of diesel from CI engines using mixed feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1110-1125.
    14. Li, Ji & Peng, Xiao & Luo, Meng & Zhao, Chun-Jian & Gu, Cheng-Bo & Zu, Yuan-Gang & Fu, Yu-Jie, 2014. "Biodiesel production from Camptotheca acuminata seed oil catalyzed by novel Brönsted–Lewis acidic ionic liquid," Applied Energy, Elsevier, vol. 115(C), pages 438-444.
    15. Long, Yun-Duo & Fang, Zhen & Su, Tong-Chao & Yang, Qing, 2014. "Co-production of biodiesel and hydrogen from rapeseed and Jatropha oils with sodium silicate and Ni catalysts," Applied Energy, Elsevier, vol. 113(C), pages 1819-1825.
    16. Lokman, Ibrahim M. & Rashid, Umer & Taufiq-Yap, Yun Hin & Yunus, Robiah, 2015. "Methyl ester production from palm fatty acid distillate using sulfonated glucose-derived acid catalyst," Renewable Energy, Elsevier, vol. 81(C), pages 347-354.
    17. Hernández-Montelongo, Rosaura & García-Sandoval, Juan Paulo & González-Álvarez, Alejandro & Dochain, Denis & Aguilar-Garnica, Efrén, 2018. "Biodiesel production in a continuous packed bed reactor with recycle: A modeling approach for an esterification system," Renewable Energy, Elsevier, vol. 116(PA), pages 857-865.
    18. Chattopadhyay, Soham & Das, Sancharini & Sen, Ramkrishna, 2011. "Rapid and precise estimation of biodiesel by high performance thin layer chromatography," Applied Energy, Elsevier, vol. 88(12), pages 5188-5192.
    19. Demirbas, Ayhan, 2011. "Competitive liquid biofuels from biomass," Applied Energy, Elsevier, vol. 88(1), pages 17-28, January.
    20. Kumar, Niraj & Varun, & Chauhan, Sant Ram, 2013. "Performance and emission characteristics of biodiesel from different origins: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 633-658.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:15:y:2011:i:9:p:4378-4399. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.