IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v15y2011i1p745-751.html
   My bibliography  Save this article

Economic assessment of biodiesel production: Comparison of alkali and biocatalyst processes

Author

Listed:
  • Jegannathan, Kenthorai Raman
  • Eng-Seng, Chan
  • Ravindra, Pogaku

Abstract

This study deals with the economic assessment of biodiesel production using three catalytic processes (1) alkali (2) soluble enzyme and (3) immobilized enzyme. All the processes were considered to be operated at batch mode with a production capacity of 103Â tonne. Biodiesel production cost using alkali catalyst process was found to be lowest ($ 1166.67/tonne) compared to soluble lipase catalyst ($7821.37/tonne) and immobilized lipase catalyst ($2414.63/tonne) process. The higher production cost was due to the higher cost of the enzyme and the higher reaction time of enzymatic process. However, reuse of immobilized catalyst decreased the production cost drastically unlike soluble enzyme catalyst.

Suggested Citation

  • Jegannathan, Kenthorai Raman & Eng-Seng, Chan & Ravindra, Pogaku, 2011. "Economic assessment of biodiesel production: Comparison of alkali and biocatalyst processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 745-751, January.
  • Handle: RePEc:eee:rensus:v:15:y:2011:i:1:p:745-751
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(10)00235-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lopes, Daniela de Carvalho & Steidle Neto, Antonio José & Mendes, Adriano Aguiar & Pereira, Débora Tamires Vítor, 2013. "Economic feasibility of biodiesel production from Macauba in Brazil," Energy Economics, Elsevier, vol. 40(C), pages 819-824.
    2. Sandouqa, Arwa & Al-Hamamre, Zayed, 2021. "Economical evaluation of jojoba cultivation for biodiesel production in Jordan," Renewable Energy, Elsevier, vol. 177(C), pages 1116-1132.
    3. Budžaki, Sandra & Miljić, Goran & Tišma, Marina & Sundaram, Smitha & Hessel, Volker, 2017. "Is there a future for enzymatic biodiesel industrial production in microreactors?," Applied Energy, Elsevier, vol. 201(C), pages 124-134.
    4. José A. León & Gisela Montero & Marcos A. Coronado & José R. Ayala & Daniela G. Montes & Laura J. Pérez & Lisandra Quintana & Jesús M. Armenta, 2022. "Thermodynamic Analysis of Waste Vegetable Oil Conversion to Biodiesel with Solar Energy," Energies, MDPI, vol. 15(5), pages 1-17, March.
    5. Yan, Yunjun & Li, Xiang & Wang, Guilong & Gui, Xiaohua & Li, Guanlin & Su, Feng & Wang, Xiaofeng & Liu, Tao, 2014. "Biotechnological preparation of biodiesel and its high-valued derivatives: A review," Applied Energy, Elsevier, vol. 113(C), pages 1614-1631.
    6. Guldhe, Abhishek & Singh, Bhaskar & Mutanda, Taurai & Permaul, Kugen & Bux, Faizal, 2015. "Advances in synthesis of biodiesel via enzyme catalysis: Novel and sustainable approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1447-1464.
    7. Granjo, José F.O. & Duarte, Belmiro P.M. & Oliveira, Nuno M.C., 2017. "Integrated production of biodiesel in a soybean biorefinery: Modeling, simulation and economical assessment," Energy, Elsevier, vol. 129(C), pages 273-291.
    8. Wong, Wan-Ying & Lim, Steven & Pang, Yean-Ling & Shuit, Siew-Hoong & Lam, Man-Kee & Tan, Inn-Shi & Chen, Wei-Hsin, 2023. "A comprehensive review of the production methods and effect of parameters for glycerol-free biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    9. Wancura, João H.C. & Brondani, Michel & dos Santos, Maicon S.N. & Oro, Carolina E.D. & Wancura, Guilherme C. & Tres, Marcus V. & Oliveira, J. Vladimir, 2023. "Demystifying the enzymatic biodiesel: How lipases are contributing to its technological advances," Renewable Energy, Elsevier, vol. 216(C).
    10. Zhao, Xuebing & Qi, Feng & Yuan, Chongli & Du, Wei & Liu, Dehua, 2015. "Lipase-catalyzed process for biodiesel production: Enzyme immobilization, process simulation and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 182-197.
    11. Chouhan, A.P. Singh & Sarma, A.K., 2011. "Modern heterogeneous catalysts for biodiesel production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4378-4399.
    12. Keon Hee Kim & Eun Yeol Lee, 2017. "Environmentally-Benign Dimethyl Carbonate-Mediated Production of Chemicals and Biofuels from Renewable Bio-Oil," Energies, MDPI, vol. 10(11), pages 1-15, November.
    13. Oncel, Suphi S., 2013. "Microalgae for a macroenergy world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 241-264.
    14. Dutra, Luciana da Silva & Costa Cerqueira Pinto, Martina & Cipolatti, Eliane Pereira & Aguieiras, Erika Cristina G. & Manoel, Evelin Andrade & Greco-Duarte, Jaqueline & Guimarães Freire, Denise Maria , 2022. "How the biodiesel from immobilized enzymes production is going on: An advanced bibliometric evaluation of global research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    15. Rahman, M.A., 2018. "Valorization of harmful algae E. compressa for biodiesel production in presence of chicken waste derived catalyst," Renewable Energy, Elsevier, vol. 129(PA), pages 132-140.
    16. Glisic, Sandra B. & Orlović, Aleksandar M., 2014. "Review of biodiesel synthesis from waste oil under elevated pressure and temperature: Phase equilibrium, reaction kinetics, process design and techno-economic study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 708-725.
    17. Gholami, Ali & Hajinezhad, Ahmad & Pourfayaz, Fathollah & Ahmadi, Mohammad Hossein, 2018. "The effect of hydrodynamic and ultrasonic cavitation on biodiesel production: An exergy analysis approach," Energy, Elsevier, vol. 160(C), pages 478-489.
    18. Živković, Snežana B. & Veljković, Milan V. & Banković-Ilić, Ivana B. & Krstić, Ivan M. & Konstantinović, Sandra S. & Ilić, Slavica B. & Avramović, Jelena M. & Stamenković, Olivera S. & Veljković, Vlad, 2017. "Technological, technical, economic, environmental, social, human health risk, toxicological and policy considerations of biodiesel production and use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 222-247.
    19. Nasir, N.F. & Daud, W.R.W. & Kamarudin, S.K. & Yaakob, Z., 2013. "Process system engineering in biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 631-639.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:15:y:2011:i:1:p:745-751. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.