IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i11p1790-d117906.html
   My bibliography  Save this article

Environmentally-Benign Dimethyl Carbonate-Mediated Production of Chemicals and Biofuels from Renewable Bio-Oil

Author

Listed:
  • Keon Hee Kim

    (Department of Chemical Engineering, Kyung Hee University, Gyeonggi-do 17104, Korea)

  • Eun Yeol Lee

    (Department of Chemical Engineering, Kyung Hee University, Gyeonggi-do 17104, Korea)

Abstract

Due to the increasing emission of carbon dioxide (CO 2 ), the development of fuels and chemicals based on renewable resources has attracted much attention. Bio-oil, as a carbon rich material, has been considered as a feedstock for biodiesel production. In conventional methanol-mediated transesterification of bio-oil for biodiesel production, significant amounts of glycerol are being generated as a byproduct. In order to overcome these issues, dimethyl carbonate (DMC) has been recently used as an alternative acyl acceptor to avoid the generation of glycerol. DMC is an environmentally-benign chemical reagent and reactive solvent due to safety, health, and environmental benefits. Moreover, DMC can be produced from CO 2 . Co-production of biodiesel and chemicals such as glycerol carbonate is possible as the concept of zero-waste utilization of bio-oil. Value-added chemicals can be synthesized using DMC as a reagent. This paper provides a review on the physical and chemical properties of DMC as a solvent, as well as the production methods for DMC. DMC-mediated production of various chemicals and fuels in both chemical and enzymatic processes are discussed together with their pros and cons.

Suggested Citation

  • Keon Hee Kim & Eun Yeol Lee, 2017. "Environmentally-Benign Dimethyl Carbonate-Mediated Production of Chemicals and Biofuels from Renewable Bio-Oil," Energies, MDPI, vol. 10(11), pages 1-15, November.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1790-:d:117906
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/11/1790/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/11/1790/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhao, Xuebing & Qi, Feng & Yuan, Chongli & Du, Wei & Liu, Dehua, 2015. "Lipase-catalyzed process for biodiesel production: Enzyme immobilization, process simulation and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 182-197.
    2. Guldhe, Abhishek & Singh, Bhaskar & Mutanda, Taurai & Permaul, Kugen & Bux, Faizal, 2015. "Advances in synthesis of biodiesel via enzyme catalysis: Novel and sustainable approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1447-1464.
    3. Verma, Puneet & Sharma, M.P. & Dwivedi, Gaurav, 2016. "Impact of alcohol on biodiesel production and properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 319-333.
    4. Jegannathan, Kenthorai Raman & Eng-Seng, Chan & Ravindra, Pogaku, 2011. "Economic assessment of biodiesel production: Comparison of alkali and biocatalyst processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 745-751, January.
    5. Ang, Gaik Tin & Tan, Kok Tat & Lee, Keat Teong, 2014. "Recent development and economic analysis of glycerol-free processes via supercritical fluid transesterification for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 61-70.
    6. Dawodu, Folasegun A. & Ayodele, Olubunmi O. & Xin, Jiayu & Zhang, Suojiang, 2014. "Dimethyl carbonate mediated production of biodiesel at different reaction temperatures," Renewable Energy, Elsevier, vol. 68(C), pages 581-587.
    7. Zhu, Liandong, 2015. "Biorefinery as a promising approach to promote microalgae industry: An innovative framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1376-1384.
    8. Leung, Dennis Y.C. & Wu, Xuan & Leung, M.K.H., 2010. "A review on biodiesel production using catalyzed transesterification," Applied Energy, Elsevier, vol. 87(4), pages 1083-1095, April.
    9. Calero, Juan & Luna, Diego & Sancho, Enrique D. & Luna, Carlos & Bautista, Felipa M. & Romero, Antonio A. & Posadillo, Alejandro & Berbel, Julio & Verdugo-Escamilla, Cristóbal, 2015. "An overview on glycerol-free processes for the production of renewable liquid biofuels, applicable in diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1437-1452.
    10. Suganya, T. & Varman, M. & Masjuki, H.H. & Renganathan, S., 2016. "Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 909-941.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laura Aguado-Deblas & Jesús Hidalgo-Carrillo & Felipa M. Bautista & Diego Luna & Carlos Luna & Juan Calero & Alejandro Posadillo & Antonio A. Romero & Rafael Estevez, 2020. "Diethyl Ether as an Oxygenated Additive for Fossil Diesel/Vegetable Oil Blends: Evaluation of Performance and Emission Quality of Triple Blends on a Diesel Engine," Energies, MDPI, vol. 13(7), pages 1-16, March.
    2. Rafael Estevez & Laura Aguado-Deblas & Francisco J. López-Tenllado & Carlos Luna & Juan Calero & Antonio A. Romero & Felipa M. Bautista & Diego Luna, 2022. "Biodiesel Is Dead: Long Life to Advanced Biofuels—A Comprehensive Critical Review," Energies, MDPI, vol. 15(9), pages 1-39, April.
    3. Guan-Bang Chen & Jia-Wen Li & Hsien-Tsung Lin & Fang-Hsien Wu & Yei-Chin Chao, 2018. "A Study of the Production and Combustion Characteristics of Pyrolytic Oil from Sewage Sludge Using the Taguchi Method," Energies, MDPI, vol. 11(9), pages 1-17, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Živković, Snežana B. & Veljković, Milan V. & Banković-Ilić, Ivana B. & Krstić, Ivan M. & Konstantinović, Sandra S. & Ilić, Slavica B. & Avramović, Jelena M. & Stamenković, Olivera S. & Veljković, Vlad, 2017. "Technological, technical, economic, environmental, social, human health risk, toxicological and policy considerations of biodiesel production and use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 222-247.
    2. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    3. Budžaki, Sandra & Miljić, Goran & Tišma, Marina & Sundaram, Smitha & Hessel, Volker, 2017. "Is there a future for enzymatic biodiesel industrial production in microreactors?," Applied Energy, Elsevier, vol. 201(C), pages 124-134.
    4. Munir, Mamoona & Ahmad, Mushtaq & Saeed, Muhammad & Waseem, Amir & Rehan, Mohammad & Nizami, Abdul-Sattar & Zafar, Muhammad & Arshad, Muhammad & Sultana, Shazia, 2019. "Sustainable production of bioenergy from novel non-edible seed oil (Prunus cerasoides) using bimetallic impregnated montmorillonite clay catalyst," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 321-332.
    5. Verma, Puneet & Sharma, M.P., 2016. "Review of process parameters for biodiesel production from different feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1063-1071.
    6. Rodríguez, R. & Espada, J.J. & Moreno, J. & Vicente, G. & Bautista, L.F. & Morales, V. & Sánchez-Bayo, A. & Dufour, J., 2018. "Environmental analysis of Spirulina cultivation and biogas production using experimental and simulation approach," Renewable Energy, Elsevier, vol. 129(PB), pages 724-732.
    7. Panchal, Balaji & Chang, Tao & Qin, Shenjun & Sun, Yuzhuang & Wang, Jinxi & Bian, Kai, 2020. "Optimization and kinetics of tung nut oil transesterification with methanol using novel solid acidic ionic liquid polymer as catalyst for methyl ester synthesis," Renewable Energy, Elsevier, vol. 151(C), pages 796-804.
    8. Okoye, P.U. & Hameed, B.H., 2016. "Review on recent progress in catalytic carboxylation and acetylation of glycerol as a byproduct of biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 558-574.
    9. Wancura, João H.C. & Brondani, Michel & dos Santos, Maicon S.N. & Oro, Carolina E.D. & Wancura, Guilherme C. & Tres, Marcus V. & Oliveira, J. Vladimir, 2023. "Demystifying the enzymatic biodiesel: How lipases are contributing to its technological advances," Renewable Energy, Elsevier, vol. 216(C).
    10. Tacias-Pascacio, Veymar G. & Torrestiana-Sánchez, Beatriz & Dal Magro, Lucas & Virgen-Ortíz, Jose J. & Suárez-Ruíz, Francisco J. & Rodrigues, Rafael C. & Fernandez-Lafuente, Roberto, 2019. "Comparison of acid, basic and enzymatic catalysis on the production of biodiesel after RSM optimization," Renewable Energy, Elsevier, vol. 135(C), pages 1-9.
    11. Bhatia, Shashi Kant & Bhatia, Ravi Kant & Yang, Yung-Hun, 2017. "An overview of microdiesel — A sustainable future source of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1078-1090.
    12. Patel, Alok & Arora, Neha & Mehtani, Juhi & Pruthi, Vikas & Pruthi, Parul A., 2017. "Assessment of fuel properties on the basis of fatty acid profiles of oleaginous yeast for potential biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 604-616.
    13. Budžaki, Sandra & Miljić, Goran & Sundaram, Smitha & Tišma, Marina & Hessel, Volker, 2018. "Cost analysis of enzymatic biodiesel production in small-scaled packed-bed reactors," Applied Energy, Elsevier, vol. 210(C), pages 268-278.
    14. Dutra, Luciana da Silva & Costa Cerqueira Pinto, Martina & Cipolatti, Eliane Pereira & Aguieiras, Erika Cristina G. & Manoel, Evelin Andrade & Greco-Duarte, Jaqueline & Guimarães Freire, Denise Maria , 2022. "How the biodiesel from immobilized enzymes production is going on: An advanced bibliometric evaluation of global research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    15. Nitièma-Yefanova, Svitlana & Coniglio, Lucie & Schneider, Raphaël & Nébié, Roger H.C. & Bonzi-Coulibaly, Yvonne L., 2016. "Ethyl biodiesel production from non-edible oils of Balanites aegyptiaca, Azadirachta indica, and Jatropha curcas seeds – Laboratory scale development," Renewable Energy, Elsevier, vol. 96(PA), pages 881-890.
    16. Fazal, Tahir & Mushtaq, Azeem & Rehman, Fahad & Ullah Khan, Asad & Rashid, Naim & Farooq, Wasif & Rehman, Muhammad Saif Ur & Xu, Jian, 2018. "Bioremediation of textile wastewater and successive biodiesel production using microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3107-3126.
    17. Juan Calero & Diego Luna & Carlos Luna & Felipa M. Bautista & Beatriz Hurtado & Antonio A. Romero & Alejandro Posadillo & Rafael Estevez, 2019. "Rhizomucor miehei Lipase Supported on Inorganic Solids, as Biocatalyst for the Synthesis of Biofuels: Improving the Experimental Conditions by Response Surface Methodology," Energies, MDPI, vol. 12(5), pages 1-15, March.
    18. Ramanna, Luveshan & Rawat, Ismail & Bux, Faizal, 2017. "Light enhancement strategies improve microalgal biomass productivity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 765-773.
    19. Zhu, Liandong & Nugroho, Y.K. & Shakeel, S.R. & Li, Zhaohua & Martinkauppi, B. & Hiltunen, E., 2017. "Using microalgae to produce liquid transportation biodiesel: What is next?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 391-400.
    20. Okoye, P.U. & Abdullah, A.Z. & Hameed, B.H., 2017. "A review on recent developments and progress in the kinetics and deactivation of catalytic acetylation of glycerol—A byproduct of biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 387-401.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1790-:d:117906. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.