IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v119y2017icp983-988.html
   My bibliography  Save this article

Process parameter optimization of low temperature transesterification of algae-Jatropha Curcas oil blend

Author

Listed:
  • Narula, Vishal
  • Thakur, Aman
  • Uniyal, Ankit
  • Kalra, Shashvat
  • Jain, Siddharth

Abstract

Biodiesel, as a substitute for diesel has been getting the attention of researchers/scientists of all over the world. The R & D has indicated that up to B20, there is no need of modification and little work is available related to suitability and sustainability of biodiesel production from Jatropha and algae as non-edible oil sources. The objective of the present study was to optimize the process parameters for transesterification of low free fatty acid (FFA) Jatropha and algae oil blend. A low temperature transesterification process was selected to make the transesterification process more energy efficient. A model was developed to correlate the biodiesel yield with process parameters viz methanol/oil volumetric ratio, Catalyst concentration and reaction time. A biodiesel yield of 81.98% was achieved with methanol/oil volumetric ratio (3:5) using KOH as catalyst (0.9% w/w) in 180 min time at 50 °C temperature. It was observed that catalyst concentration, reaction time and methanol/oil volumetric ratio had a significant effect on blend yield. It is found out that this model can be used in the industry to improve the efficiency of biodiesel production from blend of Jatropha and algae oil thereby, saving time and cost of the process in optimizing the process parameters.

Suggested Citation

  • Narula, Vishal & Thakur, Aman & Uniyal, Ankit & Kalra, Shashvat & Jain, Siddharth, 2017. "Process parameter optimization of low temperature transesterification of algae-Jatropha Curcas oil blend," Energy, Elsevier, vol. 119(C), pages 983-988.
  • Handle: RePEc:eee:energy:v:119:y:2017:i:c:p:983-988
    DOI: 10.1016/j.energy.2016.11.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216316486
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.11.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rizwan, Muhammad & Lee, Jay H. & Gani, Rafiqul, 2015. "Optimal design of microalgae-based biorefinery: Economics, opportunities and challenges," Applied Energy, Elsevier, vol. 150(C), pages 69-79.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elena Ghedini & Somayeh Taghavi & Federica Menegazzo & Michela Signoretto, 2021. "A Review on the Efficient Catalysts for Algae Transesterification to Biodiesel," Sustainability, MDPI, vol. 13(18), pages 1-20, September.
    2. Narula, Vishal & Khan, Mohd. Fazil & Negi, Ankit & Kalra, Shashvat & Thakur, Aman & Jain, Siddharth, 2017. "Low temperature optimization of biodiesel production from algal oil using CaO and CaO/Al2O3 as catalyst by the application of response surface methodology," Energy, Elsevier, vol. 140(P1), pages 879-884.
    3. Siddharth Jain & Nitin Kumar & Varun Pratap Singh & Sachin Mishra & Naveen Kumar Sharma & Mohit Bajaj & T. M. Yunus Khan, 2023. "Transesterification of Algae Oil and Little Amount of Waste Cooking Oil Blend at Low Temperature in the Presence of NaOH," Energies, MDPI, vol. 16(3), pages 1-13, January.
    4. Emine E Çakırca & Gizem N Tekin & Oğuzhan İlgen & Ayşe N Akın, 2019. "Catalytic activity of CaO-based catalyst in transesterification of microalgae oil with methanol," Energy & Environment, , vol. 30(1), pages 176-187, February.
    5. Zharova, P.A. & Chistyakov, A.V. & Shapovalov, S.S. & Pasynskii, A.A. & Tsodikov, M.V., 2019. "Original Pt-Sn/Al2O3 catalyst for selective hydrodeoxygenation of vegetable oils," Energy, Elsevier, vol. 172(C), pages 18-25.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Narula, Vishal & Khan, Mohd. Fazil & Negi, Ankit & Kalra, Shashvat & Thakur, Aman & Jain, Siddharth, 2017. "Low temperature optimization of biodiesel production from algal oil using CaO and CaO/Al2O3 as catalyst by the application of response surface methodology," Energy, Elsevier, vol. 140(P1), pages 879-884.
    2. Lim, Juin Yau & Teng, Sin Yong & How, Bing Shen & Nam, KiJeon & Heo, SungKu & Máša, Vítězslav & Stehlík, Petr & Yoo, Chang Kyoo, 2022. "From microalgae to bioenergy: Identifying optimally integrated biorefinery pathways and harvest scheduling under uncertainties in predicted climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Zhang, Quanguo & Nurhayati, & Cheng, Chieh-Lun & Nagarajan, Dillirani & Chang, Jo-Shu & Hu, Jianjun & Lee, Duu-Jong, 2017. "Carbon capture and utilization of fermentation CO2: Integrated ethanol fermentation and succinic acid production as an efficient platform," Applied Energy, Elsevier, vol. 206(C), pages 364-371.
    4. Fasahati, Peyman & Wu, Wenzhao & Maravelias, Christos T., 2019. "Process synthesis and economic analysis of cyanobacteria biorefineries: A superstructure-based approach," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    5. Gnansounou, Edgard & Kenthorai Raman, Jegannathan, 2016. "Life cycle assessment of algae biodiesel and its co-products," Applied Energy, Elsevier, vol. 161(C), pages 300-308.
    6. Siwen Gu & Jiaan Wang & Yu Zhuang, 2022. "A Two-Tier Superstructure Model for Optimization of Microalgae-Based Biorefinery," Energies, MDPI, vol. 15(23), pages 1-17, December.
    7. González Álvarez, José Francisco & Gonzalo de Grado, Jesús, 2019. "Study of combustion in CO2-Capturing semi-closed Brayton cycle conditions," Energy, Elsevier, vol. 166(C), pages 1276-1290.
    8. Rodríguez, R. & Espada, J.J. & Moreno, J. & Vicente, G. & Bautista, L.F. & Morales, V. & Sánchez-Bayo, A. & Dufour, J., 2018. "Environmental analysis of Spirulina cultivation and biogas production using experimental and simulation approach," Renewable Energy, Elsevier, vol. 129(PB), pages 724-732.
    9. Nicoletti, Jack & Ning, Chao & You, Fengqi, 2019. "Incorporating agricultural waste-to-energy pathways into biomass product and process network through data-driven nonlinear adaptive robust optimization," Energy, Elsevier, vol. 180(C), pages 556-571.
    10. Marwa G. Saad & Noura S. Dosoky & Mohamed S. Zoromba & Hesham M. Shafik, 2019. "Algal Biofuels: Current Status and Key Challenges," Energies, MDPI, vol. 12(10), pages 1-22, May.
    11. Wu, Wei & Wang, Po-Han & Lee, Duu-Jong & Chang, Jo-Shu, 2017. "Global optimization of microalgae-to-biodiesel chains with integrated cogasification combined cycle systems based on greenhouse gas emissions reductions," Applied Energy, Elsevier, vol. 197(C), pages 63-82.
    12. Cuevas-Castillo, Gabriela A. & Navarro-Pineda, Freddy S. & Baz Rodríguez, Sergio A. & Sacramento Rivero, Julio C., 2020. "Advances on the processing of microalgal biomass for energy-driven biorefineries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    13. González Álvarez, José Francisco & Gonzalo de Grado, Jesús, 2016. "Study of a modern industrial low pressure turbine for electricity production employed in oxy-combustion cycles with CO2 capture purposes," Energy, Elsevier, vol. 107(C), pages 734-747.
    14. Cruce, Jesse R. & Quinn, Jason C., 2019. "Economic viability of multiple algal biorefining pathways and the impact of public policies," Applied Energy, Elsevier, vol. 233, pages 735-746.
    15. Judd, S.J. & Al Momani, F.A.O. & Znad, H. & Al Ketife, A.M.D., 2017. "The cost benefit of algal technology for combined CO2 mitigation and nutrient abatement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 379-387.
    16. Omar Morsy & Farzad Hourfar & Qinqin Zhu & Ali Almansoori & Ali Elkamel, 2023. "A Superstructure Mixed-Integer Nonlinear Programming Optimization for the Optimal Processing Pathway Selection of Sludge-to-Energy Technologies," Sustainability, MDPI, vol. 15(5), pages 1-34, February.
    17. Kate Kim & Farzad Hourfar & Abdul Halim Bin Abdul Razik & Muhammad Rizwan & Ali Almansoori & Michael Fowler & Ali Elkamel, 2023. "Importance of Microalgae and Municipal Waste in Bioenergy Products Hierarchy—Integration of Biorefineries for Microalgae and Municipal Waste Processing: A Review," Energies, MDPI, vol. 16(17), pages 1-39, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:119:y:2017:i:c:p:983-988. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.