IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v140y2017ip1p879-884.html
   My bibliography  Save this article

Low temperature optimization of biodiesel production from algal oil using CaO and CaO/Al2O3 as catalyst by the application of response surface methodology

Author

Listed:
  • Narula, Vishal
  • Khan, Mohd. Fazil
  • Negi, Ankit
  • Kalra, Shashvat
  • Thakur, Aman
  • Jain, Siddharth

Abstract

With the swelling of climatic and environmental hazards, Biodiesel is playing the most potential and significant role as the sustainable source of energy. As a substitute for diesel, biodiesel has been getting the attention of researchers/scientists of all over the world. The R & D have indicated sustainability of biodiesel production from non-edible oil sources such as Jatropha and algal oil. The objective of the present study was to optimize the process parameters for the transesterification of algal oil using CaO and 80% wt. CaO.Al2O3 as catalysts. A low temperature transesterification process was selected. A biodiesel yield of 88.89% was achieved with methanol/oil volumetric ratio (3.2:10) using 80% wt. CaO.Al2O3 as catalyst (1.56% w/w) in 125 min time at 50 °C temperature using Response Surface Methodology. It was observed that catalyst concentration, reaction time and methanol/oil volumetric ratio had a significant effect on yield. Also, this model involving heterogeneous catalyst can be used in the industry for efficient biodiesel production from algal oil, thereby saving time and cost of the process in optimizing the process parameters.

Suggested Citation

  • Narula, Vishal & Khan, Mohd. Fazil & Negi, Ankit & Kalra, Shashvat & Thakur, Aman & Jain, Siddharth, 2017. "Low temperature optimization of biodiesel production from algal oil using CaO and CaO/Al2O3 as catalyst by the application of response surface methodology," Energy, Elsevier, vol. 140(P1), pages 879-884.
  • Handle: RePEc:eee:energy:v:140:y:2017:i:p1:p:879-884
    DOI: 10.1016/j.energy.2017.09.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217315499
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.09.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Narula, Vishal & Thakur, Aman & Uniyal, Ankit & Kalra, Shashvat & Jain, Siddharth, 2017. "Process parameter optimization of low temperature transesterification of algae-Jatropha Curcas oil blend," Energy, Elsevier, vol. 119(C), pages 983-988.
    2. Rizwan, Muhammad & Lee, Jay H. & Gani, Rafiqul, 2015. "Optimal design of microalgae-based biorefinery: Economics, opportunities and challenges," Applied Energy, Elsevier, vol. 150(C), pages 69-79.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abukhadra, Mostafa R. & Salam, Mohamed Abdel & Ibrahim, Sherouk M., 2019. "Insight into the catalytic conversion of palm oil into biodiesel using Na+/K+ trapped muscovite/phillipsite composite as a novel catalyst: Effect of ultrasonic irradiation and mechanism," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    2. Ahmad, Shamshad & Chaudhary, Shalini & Pathak, Vinayak V. & Kothari, Richa & Tyagi, V.V., 2020. "Optimization of direct transesterification of Chlorella pyrenoidosa catalyzed by waste egg shell based heterogenous nano – CaO catalyst," Renewable Energy, Elsevier, vol. 160(C), pages 86-97.
    3. Alvarez Serafini, Mariana S. & Reinoso, Deborath M. & Tonetto, Gabriela M., 2018. "Response surface study and kinetic modelling of biodiesel synthesis catalyzed by zinc stearate," Energy, Elsevier, vol. 164(C), pages 264-274.
    4. Chukwuma Onumaegbu & Abed Alaswad & Cristina Rodriguez & Abdul G. Olabi, 2018. "Optimization of Pre-Treatment Process Parameters to Generate Biodiesel from Microalga," Energies, MDPI, vol. 11(4), pages 1-16, March.
    5. Violeta Makareviciene & Egle Sendzikiene, 2022. "Application of Microalgae Biomass for Biodiesel Fuel Production," Energies, MDPI, vol. 15(11), pages 1-33, June.
    6. P. Sujin & P. M. Diaz & Ajith J. Kings & L. R. Monisha Miriam, 2023. "Sustainable biodiesel production from Ceiba penandra, Mahua longifolia, and Azadirachta indica using CaO-TiO2 nano catalyst," Energy & Environment, , vol. 34(3), pages 640-662, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Narula, Vishal & Thakur, Aman & Uniyal, Ankit & Kalra, Shashvat & Jain, Siddharth, 2017. "Process parameter optimization of low temperature transesterification of algae-Jatropha Curcas oil blend," Energy, Elsevier, vol. 119(C), pages 983-988.
    2. Lim, Juin Yau & Teng, Sin Yong & How, Bing Shen & Nam, KiJeon & Heo, SungKu & Máša, Vítězslav & Stehlík, Petr & Yoo, Chang Kyoo, 2022. "From microalgae to bioenergy: Identifying optimally integrated biorefinery pathways and harvest scheduling under uncertainties in predicted climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. González Álvarez, José Francisco & Gonzalo de Grado, Jesús, 2019. "Study of combustion in CO2-Capturing semi-closed Brayton cycle conditions," Energy, Elsevier, vol. 166(C), pages 1276-1290.
    4. Rodríguez, R. & Espada, J.J. & Moreno, J. & Vicente, G. & Bautista, L.F. & Morales, V. & Sánchez-Bayo, A. & Dufour, J., 2018. "Environmental analysis of Spirulina cultivation and biogas production using experimental and simulation approach," Renewable Energy, Elsevier, vol. 129(PB), pages 724-732.
    5. Zharova, P.A. & Chistyakov, A.V. & Shapovalov, S.S. & Pasynskii, A.A. & Tsodikov, M.V., 2019. "Original Pt-Sn/Al2O3 catalyst for selective hydrodeoxygenation of vegetable oils," Energy, Elsevier, vol. 172(C), pages 18-25.
    6. Nicoletti, Jack & Ning, Chao & You, Fengqi, 2019. "Incorporating agricultural waste-to-energy pathways into biomass product and process network through data-driven nonlinear adaptive robust optimization," Energy, Elsevier, vol. 180(C), pages 556-571.
    7. Marwa G. Saad & Noura S. Dosoky & Mohamed S. Zoromba & Hesham M. Shafik, 2019. "Algal Biofuels: Current Status and Key Challenges," Energies, MDPI, vol. 12(10), pages 1-22, May.
    8. Wu, Wei & Wang, Po-Han & Lee, Duu-Jong & Chang, Jo-Shu, 2017. "Global optimization of microalgae-to-biodiesel chains with integrated cogasification combined cycle systems based on greenhouse gas emissions reductions," Applied Energy, Elsevier, vol. 197(C), pages 63-82.
    9. Elena Ghedini & Somayeh Taghavi & Federica Menegazzo & Michela Signoretto, 2021. "A Review on the Efficient Catalysts for Algae Transesterification to Biodiesel," Sustainability, MDPI, vol. 13(18), pages 1-20, September.
    10. Zhang, Quanguo & Nurhayati, & Cheng, Chieh-Lun & Nagarajan, Dillirani & Chang, Jo-Shu & Hu, Jianjun & Lee, Duu-Jong, 2017. "Carbon capture and utilization of fermentation CO2: Integrated ethanol fermentation and succinic acid production as an efficient platform," Applied Energy, Elsevier, vol. 206(C), pages 364-371.
    11. Cuevas-Castillo, Gabriela A. & Navarro-Pineda, Freddy S. & Baz Rodríguez, Sergio A. & Sacramento Rivero, Julio C., 2020. "Advances on the processing of microalgal biomass for energy-driven biorefineries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    12. Fasahati, Peyman & Wu, Wenzhao & Maravelias, Christos T., 2019. "Process synthesis and economic analysis of cyanobacteria biorefineries: A superstructure-based approach," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    13. González Álvarez, José Francisco & Gonzalo de Grado, Jesús, 2016. "Study of a modern industrial low pressure turbine for electricity production employed in oxy-combustion cycles with CO2 capture purposes," Energy, Elsevier, vol. 107(C), pages 734-747.
    14. Gnansounou, Edgard & Kenthorai Raman, Jegannathan, 2016. "Life cycle assessment of algae biodiesel and its co-products," Applied Energy, Elsevier, vol. 161(C), pages 300-308.
    15. Cruce, Jesse R. & Quinn, Jason C., 2019. "Economic viability of multiple algal biorefining pathways and the impact of public policies," Applied Energy, Elsevier, vol. 233, pages 735-746.
    16. Emine E Çakırca & Gizem N Tekin & Oğuzhan İlgen & Ayşe N Akın, 2019. "Catalytic activity of CaO-based catalyst in transesterification of microalgae oil with methanol," Energy & Environment, , vol. 30(1), pages 176-187, February.
    17. Judd, S.J. & Al Momani, F.A.O. & Znad, H. & Al Ketife, A.M.D., 2017. "The cost benefit of algal technology for combined CO2 mitigation and nutrient abatement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 379-387.
    18. Siwen Gu & Jiaan Wang & Yu Zhuang, 2022. "A Two-Tier Superstructure Model for Optimization of Microalgae-Based Biorefinery," Energies, MDPI, vol. 15(23), pages 1-17, December.
    19. Omar Morsy & Farzad Hourfar & Qinqin Zhu & Ali Almansoori & Ali Elkamel, 2023. "A Superstructure Mixed-Integer Nonlinear Programming Optimization for the Optimal Processing Pathway Selection of Sludge-to-Energy Technologies," Sustainability, MDPI, vol. 15(5), pages 1-34, February.
    20. Kate Kim & Farzad Hourfar & Abdul Halim Bin Abdul Razik & Muhammad Rizwan & Ali Almansoori & Michael Fowler & Ali Elkamel, 2023. "Importance of Microalgae and Municipal Waste in Bioenergy Products Hierarchy—Integration of Biorefineries for Microalgae and Municipal Waste Processing: A Review," Energies, MDPI, vol. 16(17), pages 1-39, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:140:y:2017:i:p1:p:879-884. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.