IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v77y2017icp1375-1384.html
   My bibliography  Save this article

Non-sulphide zeolite catalyst for bio-jet-fuel conversion

Author

Listed:
  • Shahinuzzaman, M.
  • Yaakob, Zahira
  • Ahmed, Yunus

Abstract

In recent years, the production of bio-aviation fuels has received increased attention because of its renewability and environmental benefits. Catalytic hydrocracking is a convenient way to produce bio-jet fuel from vegetable oil. Among the different types of catalysts, sulphided zeolites showed more catalytic activity for bio-fuel conversion. However, the uses of different sulphiding agents in this process causes the emission of H2S gas and exposes the environment to sulphur residues, which are responsible for pollution and the greenhouse effect. Conversely, various non-sulphide zeolite catalysts, such as noble metal supported on ZSM-5, HZSM-5, SAPO-11, beta- zeolite, SBA-15 and mesoporous-Y zeolite, also showed considerable activity for bio-fuel conversion. Therefore, it is time to improve the non-sulphide zeolite catalysts for the production of bio-jet fuel to combat fuel recession and mitigate environmental problems. Several good reviews are available on the catalytic conversion of bio-jet fuel. This review is distinct from the previous ones, as it combines most of the previous reviews, illustrates the different supported non-sulphide zeolite-type catalysts and their preparation methods, characteristics and performance in bio-jet fuel production.

Suggested Citation

  • Shahinuzzaman, M. & Yaakob, Zahira & Ahmed, Yunus, 2017. "Non-sulphide zeolite catalyst for bio-jet-fuel conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1375-1384.
  • Handle: RePEc:eee:rensus:v:77:y:2017:i:c:p:1375-1384
    DOI: 10.1016/j.rser.2017.01.162
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117301788
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.01.162?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, H.V. & Juan, J.C. & Taufiq-Yap, Y.H., 2015. "Preparation and application of binary acid–base CaO–La2O3 catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 74(C), pages 124-132.
    2. Fortier, Marie-Odile P. & Roberts, Griffin W. & Stagg-Williams, Susan M. & Sturm, Belinda S.M., 2014. "Life cycle assessment of bio-jet fuel from hydrothermal liquefaction of microalgae," Applied Energy, Elsevier, vol. 122(C), pages 73-82.
    3. Kandaramath Hari, Thushara & Yaakob, Zahira & Binitha, Narayanan N., 2015. "Aviation biofuel from renewable resources: Routes, opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1234-1244.
    4. Liu, Guangrui & Yan, Beibei & Chen, Guanyi, 2013. "Technical review on jet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 59-70.
    5. Wang, Jicong & Bi, Peiyan & Zhang, Yajing & Xue, He & Jiang, Peiwen & Wu, Xiaoping & Liu, Junxu & Wang, Tiejun & Li, Quanxin, 2015. "Preparation of jet fuel range hydrocarbons by catalytic transformation of bio-oil derived from fast pyrolysis of straw stalk," Energy, Elsevier, vol. 86(C), pages 488-499.
    6. Ramachandran, K. & Suganya, T. & Nagendra Gandhi, N. & Renganathan, S., 2013. "Recent developments for biodiesel production by ultrasonic assist transesterification using different heterogeneous catalyst: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 410-418.
    7. Borges, M.E. & Díaz, L., 2012. "Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2839-2849.
    8. Michaelis, Laurie, 1997. "Transport sector-strategies markets, technology and innovation," Energy Policy, Elsevier, vol. 25(14-15), pages 1163-1171, December.
    9. McCollum, David & Yang, Christopher, 2009. "Achieving deep reductions in US transport greenhouse gas emissions: Scenario analysis and policy implications," Energy Policy, Elsevier, vol. 37(12), pages 5580-5596, December.
    10. Brennan, Liam & Owende, Philip, 2010. "Biofuels from microalgae--A review of technologies for production, processing, and extractions of biofuels and co-products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 557-577, February.
    11. Theodore Dickerson & Juan Soria, 2013. "Catalytic Fast Pyrolysis: A Review," Energies, MDPI, vol. 6(1), pages 1-25, January.
    12. Veiga, Paula Moraes & Luna, Aderval Severino & de Figueiredo Portilho, Marcio & de Oliveira Veloso, Cláudia & Henriques, Cristiane Assumpção, 2014. "Zn,Al-catalysts for heterogeneous biodiesel production: Basicity and process optimization," Energy, Elsevier, vol. 75(C), pages 453-462.
    13. Daroch, Maurycy & Geng, Shu & Wang, Guangyi, 2013. "Recent advances in liquid biofuel production from algal feedstocks," Applied Energy, Elsevier, vol. 102(C), pages 1371-1381.
    14. Wang, Wei-Cheng & Tao, Ling, 2016. "Bio-jet fuel conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 801-822.
    15. Chouhan, A.P. Singh & Sarma, A.K., 2011. "Modern heterogeneous catalysts for biodiesel production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4378-4399.
    16. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    17. Ju, Chao & Zhou, Yuping & He, Mingli & Wu, Qiuying & Fang, Yunming, 2016. "Improvement of selectivity from lipid to jet fuel by rational integration of feedstock properties and catalytic strategy," Renewable Energy, Elsevier, vol. 97(C), pages 1-7.
    18. Avhad, M.R. & Marchetti, J.M., 2015. "A review on recent advancement in catalytic materials for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 696-718.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alherbawi, Mohammad & McKay, Gordon & Mackey, Hamish R. & Al-Ansari, Tareq, 2021. "Jatropha curcas for jet biofuel production: Current status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Shehu, Basiru Gwandu & Clarke, Michèle L., 2020. "Successful and sustainable crop based biodiesel programme in Nigeria through ecological optimisation and intersectoral policy realignment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Chakraborty, Sourabh & Dunford, Nurhan Turgut & Goad, Carla, 2021. "A kinetic study of microalgae, municipal sludge and cedar wood co-pyrolysis," Renewable Energy, Elsevier, vol. 165(P1), pages 514-524.
    4. Lin, Cheng-Han & Wang, Wei-Cheng, 2020. "Direct conversion of glyceride-based oil into renewable jet fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    5. Maghrebi, R. & Buffi, M. & Bondioli, P. & Chiaramonti, D., 2021. "Isomerization of long-chain fatty acids and long-chain hydrocarbons: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mansir, Nasar & Teo, Siow Hwa & Rashid, Umer & Saiman, Mohd Izham & Tan, Yen Ping & Alsultan, G. Abdulkareem & Taufiq-Yap, Yun Hin, 2018. "Modified waste egg shell derived bifunctional catalyst for biodiesel production from high FFA waste cooking oil. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3645-3655.
    2. Zhang, Heng & Li, Hu & Hu, Yulin & Venkateswara Rao, Kasanneni Tirumala & Xu, Chunbao (Charles) & Yang, Song, 2019. "Advances in production of bio-based ester fuels with heterogeneous bifunctional catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    3. Wang, Jicong & Bi, Peiyan & Zhang, Yajing & Xue, He & Jiang, Peiwen & Wu, Xiaoping & Liu, Junxu & Wang, Tiejun & Li, Quanxin, 2015. "Preparation of jet fuel range hydrocarbons by catalytic transformation of bio-oil derived from fast pyrolysis of straw stalk," Energy, Elsevier, vol. 86(C), pages 488-499.
    4. Gutiérrez-Antonio, C. & Gómez-Castro, F.I. & de Lira-Flores, J.A. & Hernández, S., 2017. "A review on the production processes of renewable jet fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 709-729.
    5. Ahmad, Salman & Ouenniche, Jamal & Kolosz, Ben W. & Greening, Philip & Andresen, John M. & Maroto-Valer, M. Mercedes & Xu, Bing, 2021. "A stakeholders’ participatory approach to multi-criteria assessment of sustainable aviation fuels production pathways," International Journal of Production Economics, Elsevier, vol. 238(C).
    6. Zhang, Yajing & Bi, Peiyan & Wang, Jicong & Jiang, Peiwen & Wu, Xiaoping & Xue, He & Liu, Junxu & Zhou, Xiaoguo & Li, Quanxin, 2015. "Production of jet and diesel biofuels from renewable lignocellulosic biomass," Applied Energy, Elsevier, vol. 150(C), pages 128-137.
    7. Lim, Jackson Hwa Keen & Gan, Yong Yang & Ong, Hwai Chyuan & Lau, Beng Fye & Chen, Wei-Hsin & Chong, Cheng Tung & Ling, Tau Chuan & Klemeš, Jiří Jaromír, 2021. "Utilization of microalgae for bio-jet fuel production in the aviation sector: Challenges and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    8. Yilmaz, Nadir & Atmanli, Alpaslan, 2017. "Sustainable alternative fuels in aviation," Energy, Elsevier, vol. 140(P2), pages 1378-1386.
    9. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    10. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    11. Elena Ghedini & Somayeh Taghavi & Federica Menegazzo & Michela Signoretto, 2021. "A Review on the Efficient Catalysts for Algae Transesterification to Biodiesel," Sustainability, MDPI, vol. 13(18), pages 1-20, September.
    12. Rafael Estevez & Laura Aguado-Deblas & Diego Luna & Felipa M. Bautista, 2019. "An Overview of the Production of Oxygenated Fuel Additives by Glycerol Etherification, Either with Isobutene or tert -Butyl Alcohol, over Heterogeneous Catalysts," Energies, MDPI, vol. 12(12), pages 1-20, June.
    13. Galadima, Ahmad & Muraza, Oki, 2014. "Biodiesel production from algae by using heterogeneous catalysts: A critical review," Energy, Elsevier, vol. 78(C), pages 72-83.
    14. Wang, Wei-Cheng & Liu, Yu-Cheng & Nugroho, Rusdan Aditya Aji, 2022. "Techno-economic analysis of renewable jet fuel production: The comparison between Fischer-Tropsch synthesis and pyrolysis," Energy, Elsevier, vol. 239(PA).
    15. Vadery, Vinu & Cherikkallinmel, Sudha Kochiyil & Ramakrishnan, Resmi M. & Sugunan, Sankaran & Narayanan, Binitha N., 2019. "Green production of biodiesel over waste borosilicate glass derived catalyst and the process up-gradation in pilot scale," Renewable Energy, Elsevier, vol. 141(C), pages 1042-1053.
    16. Mukhtar, Ahmad & Saqib, Sidra & Lin, Hongfei & Hassan Shah, Mansoor Ul & Ullah, Sami & Younas, Muhammad & Rezakazemi, Mashallah & Ibrahim, Muhammad & Mahmood, Abid & Asif, Saira & Bokhari, Awais, 2022. "Current status and challenges in the heterogeneous catalysis for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    17. Li, Yuping & Zhao, Cong & Chen, Lungang & Zhang, Xinghua & Zhang, Qi & Wang, Tiejun & Qiu, Songbai & Tan, Jin & Li, Kai & Wang, Chenguang & Ma, Longlong, 2018. "Production of bio-jet fuel from corncob by hydrothermal decomposition and catalytic hydrogenation: Lab analysis of process and techno-economics of a pilot-scale facility," Applied Energy, Elsevier, vol. 227(C), pages 128-136.
    18. Sierra-Cantor, Jonathan Fabián & Guerrero-Fajardo, Carlos Alberto, 2017. "Methods for improving the cold flow properties of biodiesel with high saturated fatty acids content: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 774-790.
    19. A. K. Azad, 2017. "Biodiesel from Mandarin Seed Oil: A Surprising Source of Alternative Fuel," Energies, MDPI, vol. 10(11), pages 1-22, October.
    20. Chakraborty, Rajat & Gupta, Abhishek.K. & Chowdhury, Ratul, 2014. "Conversion of slaughterhouse and poultry farm animal fats and wastes to biodiesel: Parametric sensitivity and fuel quality assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 120-134.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:77:y:2017:i:c:p:1375-1384. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.