IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i18p10001-d630355.html
   My bibliography  Save this article

Life Cycle Assessment of Spinach Produced in Central and Southern Italy

Author

Listed:
  • Ester Foppa Pedretti

    (Department of Agricultural Food and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche 10, 60131 Ancona, Italy)

  • Kofi Armah Boakye-Yiadom

    (Department of Agricultural Food and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche 10, 60131 Ancona, Italy)

  • Elena Valentini

    (Department of Agricultural Food and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche 10, 60131 Ancona, Italy)

  • Alessio Ilari

    (Department of Agricultural Food and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche 10, 60131 Ancona, Italy)

  • Daniele Duca

    (Department of Agricultural Food and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche 10, 60131 Ancona, Italy)

Abstract

Environmental sustainability continues to attract global interest, especially due to the issue of climate change. The agri-food sector is considered a major contributor to climate change as processes and activities within the sector can negatively impact the environment. The recent changing dietary pattern towards increased vegetable consumption implies a consequent increase in production to meet demand. This study assessed the environmental performance of 1 kg of spinach/FU (Functional Unit) cultivated by different producers in Italy under integrated and organic farming systems. The life cycle assessment was used following the CML_IA impact assessment method. The data used was mainly primary, related to 2019/2020 (harvest period), and representative of the cultivation systems of central and southern Italy. From the results obtained, impact scores for central Italy were higher (e.g., for global warming 0.56 and 0.47 kg CO 2 eq. for central and southern respectively). There was high variability among the scores obtained. However, no statistically significant differences were observed at a confidence level of 95% ( p < 0.05). Integrated farming was also more impacting than organic for most categories (e.g., for global warming 0.20 kg CO 2 eq. for integrated and 0.075 kg CO 2 eq. for organic) in Cerignola, Puglia region. Emissions from fertilizer, pesticide, tillage, and combine harvesting were major contributors to impact shares. The results of this study will be helpful to ensure sustainable spinach production and consumption.

Suggested Citation

  • Ester Foppa Pedretti & Kofi Armah Boakye-Yiadom & Elena Valentini & Alessio Ilari & Daniele Duca, 2021. "Life Cycle Assessment of Spinach Produced in Central and Southern Italy," Sustainability, MDPI, vol. 13(18), pages 1-20, September.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:18:p:10001-:d:630355
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/18/10001/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/18/10001/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Joyce Smith Cooper & James A. Fava, 2006. "Life‐Cycle Assessment Practitioner Survey: Summary of Results," Journal of Industrial Ecology, Yale University, vol. 10(4), pages 12-14, October.
    2. David Tilman & Kenneth G. Cassman & Pamela A. Matson & Rosamond Naylor & Stephen Polasky, 2002. "Agricultural sustainability and intensive production practices," Nature, Nature, vol. 418(6898), pages 671-677, August.
    3. Jonathan A. Foley & Navin Ramankutty & Kate A. Brauman & Emily S. Cassidy & James S. Gerber & Matt Johnston & Nathaniel D. Mueller & Christine O’Connell & Deepak K. Ray & Paul C. West & Christian Balz, 2011. "Solutions for a cultivated planet," Nature, Nature, vol. 478(7369), pages 337-342, October.
    4. Rizal Taufiq Fauzi & Patrick Lavoie & Luca Sorelli & Mohammad Davoud Heidari & Ben Amor, 2019. "Exploring the Current Challenges and Opportunities of Life Cycle Sustainability Assessment," Sustainability, MDPI, vol. 11(3), pages 1-17, January.
    5. Omilola, Babatunde & Robele, Sophia, 2017. "The central position of agriculture within the 2030 Agenda for Sustainable Development:," IFPRI discussion papers 1683, International Food Policy Research Institute (IFPRI).
    6. Yuna Seo & Keisuke Ide & Nobutaka Kitahata & Kazuyuki Kuchitsu & Kiyoshi Dowaki, 2017. "Environmental Impact and Nutritional Improvement of Elevated CO 2 Treatment: A Case Study of Spinach Production," Sustainability, MDPI, vol. 9(10), pages 1-9, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kofi Armah Boakye-Yiadom & Alessio Ilari & Daniele Duca, 2022. "Greenhouse Gas Emissions and Life Cycle Assessment on the Black Soldier Fly ( Hermetia illucens L.)," Sustainability, MDPI, vol. 14(16), pages 1-29, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tiziano Gomiero, 2016. "Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge," Sustainability, MDPI, vol. 8(3), pages 1-41, March.
    2. Ethan Gordon & Federico Davila & Chris Riedy, 2022. "Transforming landscapes and mindscapes through regenerative agriculture," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 39(2), pages 809-826, June.
    3. Qi-Qi CHEN & Jun-Biao ZHANG & Yu HUO, 2016. "A study on research hot-spots and frontiers of agricultural science and technology innovation - visualization analysis based on the Citespace III," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 62(9), pages 429-445.
    4. Komarek, Adam M. & Kwon, Hoyoung & Haile, Beliyou & Thierfelder, Christian & Mutenje, Munyaradzi J. & Azzarri, Carlo, 2019. "From plot to scale: ex-ante assessment of conservation agriculture in Zambia," Agricultural Systems, Elsevier, vol. 173(C), pages 504-518.
    5. Hossain, Tasmin & Jones, Daniela S. & Hartley, Damon S. & Thompson, David N. & Langholtz, Matthew & Davis, Maggie, 2022. "Nth-plant scenario for forest resources and short rotation woody crops: Biorefineries and depots in the contiguous US," Applied Energy, Elsevier, vol. 325(C).
    6. Matteo Coronese & Martina Occelli & Francesco Lamperti & Andrea Roventini, 2024. "Towards sustainable agriculture: behaviors, spatial dynamics and policy in an evolutionary agent-based model," LEM Papers Series 2024/05, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    7. Rótolo, G.C. & Montico, S. & Francis, C.A. & Ulgiati, S., 2015. "How land allocation and technology innovation affect the sustainability of agriculture in Argentina Pampas: An expanded life cycle analysis," Agricultural Systems, Elsevier, vol. 141(C), pages 79-93.
    8. Maria Jose Marques & Gudrun Schwilch & Nina Lauterburg & Stephen Crittenden & Mehreteab Tesfai & Jannes Stolte & Pandi Zdruli & Claudio Zucca & Thorunn Petursdottir & Niki Evelpidou & Anna Karkani & Y, 2016. "Multifaceted Impacts of Sustainable Land Management in Drylands: A Review," Sustainability, MDPI, vol. 8(2), pages 1-34, February.
    9. Ian Bailey & Louise E. Buck, 2016. "Managing for resilience: a landscape framework for food and livelihood security and ecosystem services," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 8(3), pages 477-490, June.
    10. Reed, James & van Vianen, Josh & Foli, Samson & Clendenning, Jessica & Yang, Kevin & MacDonald, Margaret & Petrokofsky, Gillian & Padoch, Christine & Sunderland, Terry, 2017. "Trees for life: The ecosystem service contribution of trees to food production and livelihoods in the tropics," Forest Policy and Economics, Elsevier, vol. 84(C), pages 62-71.
    11. Coromaldi, Manuela & Pallante, Giacomo & Savastano, Sara, 2015. "Adoption of modern varieties, farmers' welfare and crop biodiversity: Evidence from Uganda," Ecological Economics, Elsevier, vol. 119(C), pages 346-358.
    12. Turner, Katrine Grace & Anderson, Sharolyn & Gonzales-Chang, Mauricio & Costanza, Robert & Courville, Sasha & Dalgaard, Tommy & Dominati, Estelle & Kubiszewski, Ida & Ogilvy, Sue & Porfirio, Luciana &, 2016. "A review of methods, data, and models to assess changes in the value of ecosystem services from land degradation and restoration," Ecological Modelling, Elsevier, vol. 319(C), pages 190-207.
    13. Siegmeier, Torsten & Möller, Detlev, 2013. "Mapping research at the intersection of organic farming and bioenergy — A scientometric review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 197-204.
    14. Clay, Nathan & King, Brian, 2019. "Smallholders’ uneven capacities to adapt to climate change amid Africa’s ‘green revolution’: Case study of Rwanda’s crop intensification program," World Development, Elsevier, vol. 116(C), pages 1-14.
    15. Souhil Harchaoui & Petros Chatzimpiros, 2018. "Energy, Nitrogen, and Farm Surplus Transitions in Agriculture from Historical Data Modeling. France, 1882–2013," Post-Print hal-02999180, HAL.
    16. Xu, Zhuo & He, Ping & Yin, Xinyou & Huang, Qiuhong & Ding, Wencheng & Xu, Xinpeng & Struik, Paul C., 2023. "Can the advisory system Nutrient Expert® balance productivity, profitability and sustainability for rice production systems in China?," Agricultural Systems, Elsevier, vol. 205(C).
    17. Wenting Jiang & Yingying Xing & Xiukang Wang & Xiaohu Liu & Zhigang Cui, 2020. "Developing a Sustainable Management Strategy for Quantitative Estimation of Optimum Nitrogen Fertilizer Recommendation Rates for Maize in Northeast China," Sustainability, MDPI, vol. 12(7), pages 1-12, March.
    18. Alcon, Francisco & Marín-Miñano, Cristina & Zabala, José A. & de-Miguel, María-Dolores & Martínez-Paz, José M., 2020. "Valuing diversification benefits through intercropping in Mediterranean agroecosystems: A choice experiment approach," Ecological Economics, Elsevier, vol. 171(C).
    19. Hu, Liangliang & Guo, Liang & Zhao, Lufeng & Shi, Xiaoyu & Ren, Weizheng & Zhang, Jian & Tang, Jianjun & Chen, Xin, 2020. "Productivity and the complementary use of nitrogen in the coupled rice-crab system," Agricultural Systems, Elsevier, vol. 178(C).
    20. Morteza Akbari & Pantea Foroudi & Mohana Shahmoradi & Hamid Padash & Zahra Shahabaldini Parizi & Ala Khosravani & Pouria Ataei & Maria Teresa Cuomo, 2022. "The Evolution of Food Security: Where Are We Now, Where Should We Go Next?," Sustainability, MDPI, vol. 14(6), pages 1-27, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:18:p:10001-:d:630355. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.