IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i7p2607-d336936.html
   My bibliography  Save this article

Developing a Sustainable Management Strategy for Quantitative Estimation of Optimum Nitrogen Fertilizer Recommendation Rates for Maize in Northeast China

Author

Listed:
  • Wenting Jiang

    (College of Life Science, Yan’an University, Yan’an 716000, Shaanxi, China)

  • Yingying Xing

    (College of Life Science, Yan’an University, Yan’an 716000, Shaanxi, China)

  • Xiukang Wang

    (College of Life Science, Yan’an University, Yan’an 716000, Shaanxi, China)

  • Xiaohu Liu

    (College of Land and Environmental, Shenyang Agriculture University, Shenyang 110866, China)

  • Zhigang Cui

    (College of Land and Environmental, Shenyang Agriculture University, Shenyang 110866, China)

Abstract

Excessive application of chemical fertilizers has caused a series of environmental problems, including environmental pollution. Quantitative estimation of a sustainable fertilizer recommendation rate is paramount for formulating fertilizer management strategies to improve productivity of low-yield regions and to prevent environmental damage. In this study, the database was drawn from 31 experimental sites in the main maize production region of Northeast China, during the period 2009 to 2013, to study the relationships between yield factors and nitrogen application rates, and to explore sustainable nitrogen (N) fertilizer recommendation rates based on analysis using the fertilizer response model. The fertilizer response model method is a technique that can provide effective performance predictions for the estimation of the optimum crop balanced fertilizer rates in varied agricultural regions. Results revealed that the average grain yield in treatment of N180 (the amount of nitrogen application rate was 90 kg ha −1 ) was highest, and the yield increase rate ranged from 4.77% to 58.53%, with an average of 25.89%. The sequence of grain yields in each treatment receiving N fertilizer management from high to low was: N180 > N270 > N90 in all the regions. The agronomic efficiency for applied N in N90, N180, N270 treatments was 11.8, 10.8, and 4.6 kg kg −1 , respectively. The average optimum N fertilizer recommendation rate in Liaoning province was 180.4 kg ha −1 , and the predicted optimum yield ranged between 7908.7 and 12,153.9 kg ha −1 , with an average of 9699.1 kg ha −1 . The mean optimum N fertilizer recommendation rate in western (WL), central and southern (SCL), eastern (EL), and northern (NL) of Liaoning province were 184.2, 177.2, 163.5, and 192.5 kg ha −1 , and the average predicted optimum yields were 8785.3, 10,630.3, 9347, and 9942.4 kg ha −1 . This study analyzed the spatial distribution of optimum fertilizer recommendation rates and the corresponding theoretical yield based on a large database, which helped to develop effective and environment-friendly N management strategies for sustainable production systems.

Suggested Citation

  • Wenting Jiang & Yingying Xing & Xiukang Wang & Xiaohu Liu & Zhigang Cui, 2020. "Developing a Sustainable Management Strategy for Quantitative Estimation of Optimum Nitrogen Fertilizer Recommendation Rates for Maize in Northeast China," Sustainability, MDPI, vol. 12(7), pages 1-12, March.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:2607-:d:336936
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/7/2607/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/7/2607/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Limin Chuan & Huaiguo Zheng & Sufen Sun & Ailing Wang & Jipei Liu & Tongke Zhao & Jingjuan Zhao, 2019. "A Sustainable Way of Fertilizer Recommendation Based on Yield Response and Agronomic Efficiency for Chinese Cabbage," Sustainability, MDPI, vol. 11(16), pages 1-16, August.
    2. Wenting Jiang & Xiaohu Liu & Ying Wang & Yu Zhang & Wen Qi, 2018. "Responses to Potassium Application and Economic Optimum K Rate of Maize under Different Soil Indigenous K Supply," Sustainability, MDPI, vol. 10(7), pages 1-10, July.
    3. David Tilman & Kenneth G. Cassman & Pamela A. Matson & Rosamond Naylor & Stephen Polasky, 2002. "Agricultural sustainability and intensive production practices," Nature, Nature, vol. 418(6898), pages 671-677, August.
    4. Jonathan A. Foley & Navin Ramankutty & Kate A. Brauman & Emily S. Cassidy & James S. Gerber & Matt Johnston & Nathaniel D. Mueller & Christine O’Connell & Deepak K. Ray & Paul C. West & Christian Balz, 2011. "Solutions for a cultivated planet," Nature, Nature, vol. 478(7369), pages 337-342, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ethan Gordon & Federico Davila & Chris Riedy, 2022. "Transforming landscapes and mindscapes through regenerative agriculture," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 39(2), pages 809-826, June.
    2. Qi-Qi CHEN & Jun-Biao ZHANG & Yu HUO, 2016. "A study on research hot-spots and frontiers of agricultural science and technology innovation - visualization analysis based on the Citespace III," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 62(9), pages 429-445.
    3. Haozhe Zhang & Jinyi Li, 2024. "Mapping the urban and rural planning response paths to pandemics of infectious diseases," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-12, December.
    4. Matteo Coronese & Martina Occelli & Francesco Lamperti & Andrea Roventini, 2024. "Towards sustainable agriculture: behaviors, spatial dynamics and policy in an evolutionary agent-based model," LEM Papers Series 2024/05, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    5. Rótolo, G.C. & Montico, S. & Francis, C.A. & Ulgiati, S., 2015. "How land allocation and technology innovation affect the sustainability of agriculture in Argentina Pampas: An expanded life cycle analysis," Agricultural Systems, Elsevier, vol. 141(C), pages 79-93.
    6. Reed, James & van Vianen, Josh & Foli, Samson & Clendenning, Jessica & Yang, Kevin & MacDonald, Margaret & Petrokofsky, Gillian & Padoch, Christine & Sunderland, Terry, 2017. "Trees for life: The ecosystem service contribution of trees to food production and livelihoods in the tropics," Forest Policy and Economics, Elsevier, vol. 84(C), pages 62-71.
    7. Siegmeier, Torsten & Möller, Detlev, 2013. "Mapping research at the intersection of organic farming and bioenergy — A scientometric review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 197-204.
    8. Clay, Nathan & King, Brian, 2019. "Smallholders’ uneven capacities to adapt to climate change amid Africa’s ‘green revolution’: Case study of Rwanda’s crop intensification program," World Development, Elsevier, vol. 116(C), pages 1-14.
    9. Xu, Zhuo & He, Ping & Yin, Xinyou & Huang, Qiuhong & Ding, Wencheng & Xu, Xinpeng & Struik, Paul C., 2023. "Can the advisory system Nutrient Expert® balance productivity, profitability and sustainability for rice production systems in China?," Agricultural Systems, Elsevier, vol. 205(C).
    10. Alcon, Francisco & Marín-Miñano, Cristina & Zabala, José A. & de-Miguel, María-Dolores & Martínez-Paz, José M., 2020. "Valuing diversification benefits through intercropping in Mediterranean agroecosystems: A choice experiment approach," Ecological Economics, Elsevier, vol. 171(C).
    11. Ramos-Fuentes, Isaac A. & Elamri, Yassin & Cheviron, Bruno & Dejean, Cyril & Belaud, Gilles & Fumey, Damien, 2023. "Effects of shade and deficit irrigation on maize growth and development in fixed and dynamic AgriVoltaic systems," Agricultural Water Management, Elsevier, vol. 280(C).
    12. C. Brannon Andersen & R. Kyle Donovan & John E. Quinn, 2015. "Human Appropriation of Net Primary Production (HANPP) in an Agriculturally-Dominated Watershed, Southeastern USA," Land, MDPI, vol. 4(2), pages 1-28, June.
    13. Tiziano Gomiero, 2016. "Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge," Sustainability, MDPI, vol. 8(3), pages 1-41, March.
    14. Ester Foppa Pedretti & Kofi Armah Boakye-Yiadom & Elena Valentini & Alessio Ilari & Daniele Duca, 2021. "Life Cycle Assessment of Spinach Produced in Central and Southern Italy," Sustainability, MDPI, vol. 13(18), pages 1-20, September.
    15. Komarek, Adam M. & Kwon, Hoyoung & Haile, Beliyou & Thierfelder, Christian & Mutenje, Munyaradzi J. & Azzarri, Carlo, 2019. "From plot to scale: ex-ante assessment of conservation agriculture in Zambia," Agricultural Systems, Elsevier, vol. 173(C), pages 504-518.
    16. Hossain, Tasmin & Jones, Daniela S. & Hartley, Damon S. & Thompson, David N. & Langholtz, Matthew & Davis, Maggie, 2022. "Nth-plant scenario for forest resources and short rotation woody crops: Biorefineries and depots in the contiguous US," Applied Energy, Elsevier, vol. 325(C).
    17. Maria Jose Marques & Gudrun Schwilch & Nina Lauterburg & Stephen Crittenden & Mehreteab Tesfai & Jannes Stolte & Pandi Zdruli & Claudio Zucca & Thorunn Petursdottir & Niki Evelpidou & Anna Karkani & Y, 2016. "Multifaceted Impacts of Sustainable Land Management in Drylands: A Review," Sustainability, MDPI, vol. 8(2), pages 1-34, February.
    18. Ian Bailey & Louise E. Buck, 2016. "Managing for resilience: a landscape framework for food and livelihood security and ecosystem services," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 8(3), pages 477-490, June.
    19. Coromaldi, Manuela & Pallante, Giacomo & Savastano, Sara, 2015. "Adoption of modern varieties, farmers' welfare and crop biodiversity: Evidence from Uganda," Ecological Economics, Elsevier, vol. 119(C), pages 346-358.
    20. Turner, Katrine Grace & Anderson, Sharolyn & Gonzales-Chang, Mauricio & Costanza, Robert & Courville, Sasha & Dalgaard, Tommy & Dominati, Estelle & Kubiszewski, Ida & Ogilvy, Sue & Porfirio, Luciana &, 2016. "A review of methods, data, and models to assess changes in the value of ecosystem services from land degradation and restoration," Ecological Modelling, Elsevier, vol. 319(C), pages 190-207.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:2607-:d:336936. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.