IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v325y2022ics0306261922011461.html
   My bibliography  Save this article

Nth-plant scenario for forest resources and short rotation woody crops: Biorefineries and depots in the contiguous US

Author

Listed:
  • Hossain, Tasmin
  • Jones, Daniela S.
  • Hartley, Damon S.
  • Thompson, David N.
  • Langholtz, Matthew
  • Davis, Maggie

Abstract

Estimating the US potential of woody material is of vital importance to ensure cost-effective supply logistics and develop a sustainable bioenergy and bioproducts industry. We analyzed a mature conversion technology for woody resources for the contiguous US that takes advantage of economies of scale: the nth-plant. We developed a database to quantify the total accessible woody biomass within a distributed network of preprocessing depots and biorefineries considering both quality specifications for conversion and a target cost to compete with fossil fuels. We considered two categories of woody biomass: 1) forest residues from trees, tops and limbs produced from conventional thinning and timber harvesting operations as well as non-timber tree removal; and 2) short rotation woody crops such as poplar, willow, pine, and eucalyptus. A mixed integer linear programming model was developed to analyze scenarios with woody feedstock blends at variable biomass ash contents and cost targets at the biorefinery. When considering a target cost of $85.51/dry ton (2016$) at the biorefinery, the maximum accessible biomass from forest residues in 2040 remained constant at 106 million dry tons regardless of ash targets. Including short rotation woody crops as part of the blend increased the total accessible biomass to 153 and 195 million dry tons at ash targets of 1% and 1.75%, respectively. We concluded from our analysis that woody resources could address about 55% of EPA’s (Environmental Protection Agency) target of 16 billion gallons of cellulosic biofuel.

Suggested Citation

  • Hossain, Tasmin & Jones, Daniela S. & Hartley, Damon S. & Thompson, David N. & Langholtz, Matthew & Davis, Maggie, 2022. "Nth-plant scenario for forest resources and short rotation woody crops: Biorefineries and depots in the contiguous US," Applied Energy, Elsevier, vol. 325(C).
  • Handle: RePEc:eee:appene:v:325:y:2022:i:c:s0306261922011461
    DOI: 10.1016/j.apenergy.2022.119881
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922011461
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119881?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bai, Yun & Hwang, Taesung & Kang, Seungmo & Ouyang, Yanfeng, 2011. "Biofuel refinery location and supply chain planning under traffic congestion," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 162-175, January.
    2. Lan, Kai & Ou, Longwen & Park, Sunkyu & Kelley, Stephen S. & English, Burton C. & Yu, T. Edward & Larson, James & Yao, Yuan, 2021. "Techno-Economic Analysis of decentralized preprocessing systems for fast pyrolysis biorefineries with blended feedstocks in the southeastern United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    3. Hossain, Tasmin & Jones, Daniela & Hartley, Damon & Griffel, L. Michael & Lin, Yingqian & Burli, Pralhad & Thompson, David N. & Langholtz, Matthew & Davis, Maggie & Brandt, Craig, 2021. "The nth-plant scenario for blended feedstock conversion and preprocessing nationwide: Biorefineries and depots," Applied Energy, Elsevier, vol. 294(C).
    4. Natarajan, Karthikeyan & Leduc, Sylvain & Pelkonen, Paavo & Tomppo, Erkki & Dotzauer, Erik, 2014. "Optimal locations for second generation Fischer Tropsch biodiesel production in Finland," Renewable Energy, Elsevier, vol. 62(C), pages 319-330.
    5. Zhang, Fengli & Johnson, Dana M. & Wang, Jinjiang, 2016. "Integrating multimodal transport into forest-delivered biofuel supply chain design," Renewable Energy, Elsevier, vol. 93(C), pages 58-67.
    6. David Tilman & Kenneth G. Cassman & Pamela A. Matson & Rosamond Naylor & Stephen Polasky, 2002. "Agricultural sustainability and intensive production practices," Nature, Nature, vol. 418(6898), pages 671-677, August.
    7. Ambarish M. Acharya & Daniela S. Gonzales & Sandra D. Eksioglu & Sumesh Arora, 2014. "An Excel-Based Decision Support System for Supply Chain Design and Management of Biofuels," International Journal of Operations Research and Information Systems (IJORIS), IGI Global, vol. 5(4), pages 26-43, October.
    8. Johan Rockström & Will Steffen & Kevin Noone & Åsa Persson & F. Stuart Chapin & Eric F. Lambin & Timothy M. Lenton & Marten Scheffer & Carl Folke & Hans Joachim Schellnhuber & Björn Nykvist & Cynthia , 2009. "A safe operating space for humanity," Nature, Nature, vol. 461(7263), pages 472-475, September.
    9. Jonathan A. Foley & Navin Ramankutty & Kate A. Brauman & Emily S. Cassidy & James S. Gerber & Matt Johnston & Nathaniel D. Mueller & Christine O’Connell & Deepak K. Ray & Paul C. West & Christian Balz, 2011. "Solutions for a cultivated planet," Nature, Nature, vol. 478(7369), pages 337-342, October.
    10. Gonzales, Daniela & Searcy, Erin M. & Ekşioğlu, Sandra D., 2013. "Cost analysis for high-volume and long-haul transportation of densified biomass feedstock," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 48-61.
    11. Roni, Mohammad S. & Thompson, David N. & Hartley, Damon S., 2019. "Distributed biomass supply chain cost optimization to evaluate multiple feedstocks for a biorefinery," Applied Energy, Elsevier, vol. 254(C).
    12. Braimakis, Konstantinos & Atsonios, Konstantinos & Panopoulos, Kyriakos D. & Karellas, Sotirios & Kakaras, Emmanuel, 2014. "Economic evaluation of decentralized pyrolysis for the production of bio-oil as an energy carrier for improved logistics towards a large centralized gasification plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 57-72.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ethan Gordon & Federico Davila & Chris Riedy, 2022. "Transforming landscapes and mindscapes through regenerative agriculture," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 39(2), pages 809-826, June.
    2. Tiziano Gomiero, 2016. "Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge," Sustainability, MDPI, vol. 8(3), pages 1-41, March.
    3. de Jong, Sierk & Hoefnagels, Ric & Wetterlund, Elisabeth & Pettersson, Karin & Faaij, André & Junginger, Martin, 2017. "Cost optimization of biofuel production – The impact of scale, integration, transport and supply chain configurations," Applied Energy, Elsevier, vol. 195(C), pages 1055-1070.
    4. Ester Foppa Pedretti & Kofi Armah Boakye-Yiadom & Elena Valentini & Alessio Ilari & Daniele Duca, 2021. "Life Cycle Assessment of Spinach Produced in Central and Southern Italy," Sustainability, MDPI, vol. 13(18), pages 1-20, September.
    5. Hossain, Tasmin & Jones, Daniela & Hartley, Damon & Griffel, L. Michael & Lin, Yingqian & Burli, Pralhad & Thompson, David N. & Langholtz, Matthew & Davis, Maggie & Brandt, Craig, 2021. "The nth-plant scenario for blended feedstock conversion and preprocessing nationwide: Biorefineries and depots," Applied Energy, Elsevier, vol. 294(C).
    6. Friedman, Nicola & Ormiston, Jarrod, 2022. "Blockchain as a sustainability-oriented innovation?: Opportunities for and resistance to Blockchain technology as a driver of sustainability in global food supply chains," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    7. Qi-Qi CHEN & Jun-Biao ZHANG & Yu HUO, 2016. "A study on research hot-spots and frontiers of agricultural science and technology innovation - visualization analysis based on the Citespace III," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 62(9), pages 429-445.
    8. Rutten, Martine & Achterbosch, Thom J. & de Boer, Imke J.M. & Cuaresma, Jesus Crespo & Geleijnse, Johanna M. & Havlík, Petr & Heckelei, Thomas & Ingram, John & Leip, Adrian & Marette, Stéphan & van Me, 2018. "Metrics, models and foresight for European sustainable food and nutrition security: The vision of the SUSFANS project," Agricultural Systems, Elsevier, vol. 163(C), pages 45-57.
    9. Conteratto, Caroline & Artuzo, Felipe Dalzotto & Benedetti Santos, Omar Inácio & Talamini, Edson, 2021. "Biorefinery: A comprehensive concept for the sociotechnical transition toward bioeconomy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    10. Tiba, Sofien, 2023. "Unlocking the poverty and hunger puzzle: Toward democratizing the natural resource for accomplishing SDGs 1&2," Resources Policy, Elsevier, vol. 82(C).
    11. Komarek, Adam M. & Kwon, Hoyoung & Haile, Beliyou & Thierfelder, Christian & Mutenje, Munyaradzi J. & Azzarri, Carlo, 2019. "From plot to scale: ex-ante assessment of conservation agriculture in Zambia," Agricultural Systems, Elsevier, vol. 173(C), pages 504-518.
    12. Malladi, Krishna Teja & Sowlati, Taraneh, 2018. "Biomass logistics: A review of important features, optimization modeling and the new trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 587-599.
    13. Ge, Yuntian & Li, Lin & Yun, Lingxiang, 2021. "Modeling and economic optimization of cellulosic biofuel supply chain considering multiple conversion pathways," Applied Energy, Elsevier, vol. 281(C).
    14. Liobikiene, Genovaite & Chen, Xueli & Streimikiene, Dalia & Balezentis, Tomas, 2020. "The trends in bioeconomy development in the European Union: Exploiting capacity and productivity measures based on the land footprint approach," Land Use Policy, Elsevier, vol. 91(C).
    15. Matteo Coronese & Martina Occelli & Francesco Lamperti & Andrea Roventini, 2024. "Towards sustainable agriculture: behaviors, spatial dynamics and policy in an evolutionary agent-based model," LEM Papers Series 2024/05, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    16. Rótolo, G.C. & Montico, S. & Francis, C.A. & Ulgiati, S., 2015. "How land allocation and technology innovation affect the sustainability of agriculture in Argentina Pampas: An expanded life cycle analysis," Agricultural Systems, Elsevier, vol. 141(C), pages 79-93.
    17. Maria Jose Marques & Gudrun Schwilch & Nina Lauterburg & Stephen Crittenden & Mehreteab Tesfai & Jannes Stolte & Pandi Zdruli & Claudio Zucca & Thorunn Petursdottir & Niki Evelpidou & Anna Karkani & Y, 2016. "Multifaceted Impacts of Sustainable Land Management in Drylands: A Review," Sustainability, MDPI, vol. 8(2), pages 1-34, February.
    18. Ian Bailey & Louise E. Buck, 2016. "Managing for resilience: a landscape framework for food and livelihood security and ecosystem services," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 8(3), pages 477-490, June.
    19. Lan, Kai & Ou, Longwen & Park, Sunkyu & Kelley, Stephen S. & English, Burton C. & Yu, T. Edward & Larson, James & Yao, Yuan, 2021. "Techno-Economic Analysis of decentralized preprocessing systems for fast pyrolysis biorefineries with blended feedstocks in the southeastern United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    20. Reed, James & van Vianen, Josh & Foli, Samson & Clendenning, Jessica & Yang, Kevin & MacDonald, Margaret & Petrokofsky, Gillian & Padoch, Christine & Sunderland, Terry, 2017. "Trees for life: The ecosystem service contribution of trees to food production and livelihoods in the tropics," Forest Policy and Economics, Elsevier, vol. 84(C), pages 62-71.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:325:y:2022:i:c:s0306261922011461. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.